Vis enkel innførsel

dc.contributor.authorDing, Yu
dc.contributor.authorYu, Haiyang
dc.contributor.authorLin, Meichao
dc.contributor.authorOrtiz, Michael
dc.contributor.authorXiao, Senbo
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2023-09-12T06:06:15Z
dc.date.available2023-09-12T06:06:15Z
dc.date.created2023-08-25T15:03:18Z
dc.date.issued2024
dc.identifier.citationJournal of Materials Science & Technology. 2024, 173 225-236.en_US
dc.identifier.issn1005-0302
dc.identifier.urihttps://hdl.handle.net/11250/3088751
dc.description.abstractHydrogen as an interstitial solute at grain boundaries (GBs) can have a catastrophic impact on the mechanical properties of many metals. Despite the global research effort, the underlying hydrogen-GB interactions in polycrystals remain inadequately understood. In this study, using Voronoi tessellations and atomistic simulations, we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites. Three distinct peaks in the energy spectrum are identified, corresponding to different structural fingerprints. The first peak (-0.205 eV) represents the most favorable segregation sites at GB core, while the second and third peaks account for the sites at GB surface. By incorporating a thermodynamic model, the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs, unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies. The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion, with the low-barrier channels inside GB core contributing to short-circuit diffusion, while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers. Mean square displacement analysis further confirms the findings, and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice. The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic scale interactions and macroscopic behaviors in engineering materials.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHydrogen trapping and diffusion in polycrystalline nickel: the spectrum of grain boundary segregationen_US
dc.title.alternativeHydrogen trapping and diffusion in polycrystalline nickel: the spectrum of grain boundary segregationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber225-236en_US
dc.source.volume173en_US
dc.source.journalJournal of Materials Science & Technologyen_US
dc.identifier.doi10.1016/j.jmst.2023.07.027
dc.identifier.cristin2169782
dc.relation.projectNorges forskningsråd: 294689en_US
dc.relation.projectSigma2: nn9110ken_US
dc.relation.projectSigma2: nn9391ken_US
dc.relation.projectNorges forskningsråd: 294739en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal