Vis enkel innførsel

dc.contributor.advisorReenaas, Turid
dc.contributor.advisorKildemo, Morten
dc.contributor.authorBrakstad, Thomas Vågenes
dc.date.accessioned2023-08-28T12:28:37Z
dc.date.available2023-08-28T12:28:37Z
dc.date.issued2023
dc.identifier.isbn978-82-326-7235-6
dc.identifier.issn2703-8084
dc.identifier.urihttps://hdl.handle.net/11250/3086021
dc.description.abstractDagens mest brukte solcelleteknologi nærmer seg den øvre teoretiske grensen for hvor effektivt den kan omgjøre sollys til elektrisitet. For å kunne lage enda mer effektive solceller trenger man derfor å benytte seg av ny solcelleteknologi. En foreslått ny teknologi er såkalte mellombåndsolceller. Fordelen med mellombåndssolceller er at de kan ha en effektivitet som er over 50% høyere enn tradisjonelle solceller, ved kun å legge til ett ekstra lag i solcellene. Mellombåndsolceller er basert på en ny type materialer som gjør det mulig for solcellene å absorbere et bredere spektrum av sollyset, som gir mere strøm, samtidig som solcellene har en høyere spenning, som fører til økt effektivitet. Disse nye materialene er det foreslått å lage ved å tilsette andre grunnstoff til kjente halvledermaterialer, eller ved å introdusere defekter. Hovedmålet for dette doktorgradsprosjektet var å framstille titandioksid tilsatt varierende mengder krom og nitrogen. Materialene ble laget i form av tynne sjikt, eller filmer, ved hjelp av en teknikk som kalles pulset laser deponering (PLD). I prosjektet utviklet vi en metode der vi kunne bruke PLD til å lage filmer hvor mengden krom og nitrogen varierte med posisjon i filmen. Da slapp vi å lage én film for hver sammensetning. De optiske egenskapene til disse filmene ble deretter karakterisert ved hjelp av ellipsometri, for å kunne bestemme hvilken mengde krom og nitrogen som var best for formålet. I tillegg ble de optiske egenskapene til andre materialkandidater, som sub-støkiometrisk molybdentrioksid og sinksulfid tilsatt krom, også studert. Alle de studerte materialsystemene viste lovende optiske egenskaper. Imidlertid var det titandioksid tilsatt krom og nitrogen, med over 8 at.% krom og nitrogen, som gav de mest interessante resultatene. Økningen i absorpsjonen var imidlertid avhengig av både materialets krystallinske egenskaper i tillegg til mengden krom og nitrogen.en_US
dc.description.abstractThe intermediate band solar cell (IBSC) is a relatively new solar cell concept with the potential to increase the power conversion efficiency by over 50% compared to a traditional, single junction solar cell, while maintaining a simple, 3-layer solar cell architecture. The IBCS relies on a so-called intermediate band (IB) material and absorbs light across a wider range of the solar spectrum while maintaining a large open-circuit voltage. One way of fabricating an IB material is to create deep levels in the bandgap of the host material. This can potentially be achieved either through heavy doping or the careful defect engineering of a wide bandgap semiconductor. The main goal of this thesis has been to fabricate (Cr + N) co-doped TiO2 with a range of doping concentrations, using pulsed laser deposition (PLD) and to perform optical and structural characterization of the potential IB materials produced. A method for designing and fabricating samples with a continuous compositional spread (CCS) using PLD, was developed in order to speed up the material screening process. In our case, the doping concentration was varied (from approx. 2 to 10 at-%), across the 50.8 mm substrates. In addition to undoped and (Cr + N) co-doped TiO2, the optical properties of other potential intermediate band materials have also been studied, such as sub-stoichiometric MoO3 and Cr doped ZnS. As an IB material must absorb light below the bandgap of the host material, a first step is to determine if sub-bandgap absorption is observed. Spectroscopic ellipsometry is an optical characterization technique which uses polarized light in order to deduce the material’s optical properties and thin film thickness. Ellipsometry exploits the fact that light reflects off a material differently depending on its polarization and the material’s complex dielectric function. Therefore, by varying the incoming light’s polarization, and measuring the polarization state of the reflected wave, the optical properties of the material can be deduced through careful optical modelling. Thus, ellipsometry is well suited to determine if sub-bandgap absorption occurs in a material. The main findings for the material systems studied are that all of the potential IB materials demonstrate enhanced absorption below the bandgap. However, the most promising results were obtained for the (Cr + N) co-doped TiO2 films, which displayed an interesting sub-bandgap absorption feature in line with the predicted absorption coefficient found in literature. The sub-bandgap absorption features were found to depend heavily on both doping concentration and the crystalline properties. As the aim of this work was on doping incorporation into TiO2, further work should be done in order to improve the crystalline quality of the samples produced. Sub-stoichiometric MoO(3−x) fabricated by the spin coating technique also exhibits an interesting below bandgap absorption feature, potentially related to an IB. Further work looking into incorporating MoO(3−x) into a solar cell device should be done in an attempt to make a complete IBSC.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2023:268
dc.relation.haspartPaper 1: Brakstad, Thomas; Jorge, Marina; Kildemo, Morten; Reenaas, Turid Structural, chemical, and optical properties of TiO2 fabricated by PLDen_US
dc.relation.haspartPaper 2: Lysne, Hogne; Brakstad, Thomas Vågenes; Kildemo, Morten; Reenaas, Turid Dory. Improved methods for design of PLD and combinatorial PLD films. Journal of Applied Physics 2022 ;Volum 132.(12) https://doi.org/10.1063/5.0105298 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) licenseen_US
dc.relation.haspartPaper 3: Brakstad, Thomas; Lysne, Hogne; Michaelsen,Marcus Grand; Kildemo, Morten; Reenaas, Turid nc-PLD of (Cr+N) co-doped TiO2 for intermediate band solar cells PART 1: Challenges in N incorporationen_US
dc.relation.haspartPaper 4: Brakstad, Thomas; Lysne, Hogne; Rosnes, Andreas; Michaelsen,Marcus Grand; Kildemo, Morten; Holmestarand, Randi; Reenaas, Turid nc-PLD of (Cr+N) co-doped TiO2 for intermediate band solar cells PART 2: Optical properties and microstructureen_US
dc.relation.haspartPaper 5: Inzani, Katherine; Nematollahi, Mohammadreza; Selbach, Sverre Magnus; Grande, Tor; Waalekalv, Magnus Langøien; Brakstad, Thomas; Reenaas, Turid Dory; Kildemo, Morten; Vullum-Bruer, Fride. Tailoring properties of nanostructured MoO3−x thin films by aqueous solution deposition. Applied Surface Science 2018 ;Volum 459. s. 822-829 https://doi.org/10.1016/j.apsusc.2018.07.196en_US
dc.relation.haspartPaper 6: Jorge, Marina; Brakstad, Thomas Vågenes; Nematollahi, Mohammadreza; Kildemo, Morten; Reenaas, Turid Dory. Sub-stochiometric MoO3 for intermediate band solar cells. 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)en_US
dc.relation.haspartPaper 7: Brakstad, Thomas; Hope, Benjamin Roaldssønn; Nematollahi, Mohammadreza; Kildemo, Morten; Podraza, Niklas J.; Ghimire, Kiran; Reenaas, Turid Worren. Ellipsometric study of the optical response of ZnS:Cr for PV applications. Applied Surface Science 2017 ;Volum 421. s. 315-319 http://dx.doi.org/10.1016/j.apsusc.2016.10.157en_US
dc.titlePotential Intermediate Band Materials: Fabrication and Ellipsometric studiesen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Mathematics and natural science: 400::Physics: 430en_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel