Soil Metabolome Impacts the Formation of the Eco-corona and Adsorption Processes on Microplastic Surfaces
Peer reviewed, Journal article
Published version
Permanent lenke
https://hdl.handle.net/11250/3084690Utgivelsesdato
2023Metadata
Vis full innførselSamlinger
- Institutt for kjemi [1416]
- Publikasjoner fra CRIStin - NTNU [39143]
Sammendrag
The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants.