Vis enkel innførsel

dc.contributor.authorShahi, Fatemeh
dc.contributor.authorParvin, Parviz
dc.contributor.authorMortazavi, Seyedeh Zahra
dc.contributor.authorReyhani, Ali
dc.contributor.authorSadrzadeh, Mohtada
dc.contributor.authorMoafi, Ali
dc.contributor.authorEbrahimi, Mahdi
dc.contributor.authorAghaei, Mohammadreza
dc.date.accessioned2023-05-25T07:36:30Z
dc.date.available2023-05-25T07:36:30Z
dc.date.created2023-03-20T12:25:03Z
dc.date.issued2022
dc.identifier.citationEnergies. 2022, 16 (1), .en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/3068930
dc.description.abstractHere, nitrogen doped molybdenum disulfide quantum dots (N-MoS2 QDs) are fabricated by making use of the pulsed laser ablation (PLA) process in liquid nitrogen (LN2) as a dopant agent. In fact, LN2 contributes the rapid condensation of the plasma plume to form MoS2 QDs, optimizing the conditions for the synthesis of N-doped MoS2 with p-type property. The structural/optical features of the synthesized products are studied using transmission electron microscopy (TEM), absorption spectroscopy, photoluminescence (PL) spectroscopy techniques, and X-ray photoelectron spectroscopy (XPS). The TEM image shows the creation of MoS2 QDs with 5.5 nm average size. UV-vis and PL spectroscopy confirm the formation of N-MoS2 QDs according to the dominant peaks. The Tuck plot gives a direct band-gap of 4.34 eV for MoS2 QDs. Furthermore, XPS spectroscopy reveals Mo-N bonding, indicating nitrogen doping as evidence of p-type MoS2 QDs. Thus, PLA provides a single-stage way to the clean and green synthesis of the MoS2 QDs suspension without a need for high vacuum devices and additional chemical components. Regarding the pristine MoS2, the N-MoS2 QDs benefit from a low overpotential of −0.35 V at −10 mA/cm2 per µg alongside a low Tafel slope of 300 mV/dec. Subsequently, the lower Rct value of N-MoS2 QDs verifies the enhancement of the charge transfer kinetics mainly due to the elevated electronic conductivity. Furthermore, the quasi-rectangular cyclic voltammetry (CV) as well as the larger current window demonstrate a notable electrocatalytic activity. The former is based on the enhanced active sites in favor of N-MoS2 QDs against other samples of interest. Thereby, it is discovered that the N-doped MoS2 QD acts as an effective catalyst to notably improve the performance of the hydrogen evolution reaction (HER).en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleIn-Situ Generation of Nitrogen-Doped MoS2 Quantum Dots Using Laser Ablation in Cryogenic Medium for Hydrogen Evolution Reactionen_US
dc.title.alternativeIn-Situ Generation of Nitrogen-Doped MoS<inf>2</inf> Quantum Dots Using Laser Ablation in Cryogenic Medium for Hydrogen Evolution Reactionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber15en_US
dc.source.volume16en_US
dc.source.journalEnergiesen_US
dc.source.issue1en_US
dc.identifier.doi10.3390/en16010455
dc.identifier.cristin2135289
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal