Vis enkel innførsel

dc.contributor.authorHansen, Thomas Henrik Hertzfelder
dc.date.accessioned2023-05-25T06:52:08Z
dc.date.available2023-05-25T06:52:08Z
dc.date.created2018-10-30T13:57:51Z
dc.date.issued2018
dc.identifier.citationWind Energy. 2018, 21 (7), 502-514.en_US
dc.identifier.issn1095-4244
dc.identifier.urihttps://hdl.handle.net/11250/3068912
dc.description.abstractAn airfoil optimization method for wind turbine applications that controls the loss in performance due to leading edge contamination is developed and tested. The method uses the class-shape-transformation technique to parametrize the airfoil geometry and uses an adjusted version of the panel code XFOIL to calculate the aerodynamic performance. To find optimal airfoil shapes, the derivative-free Covariance Matrix Adaptation Evolution Strategy is used in combination with an adaptive penalty function. The method is tested for the design of airfoils for the outer part of a megawatt-class wind turbine rotor blade, and the results are compared with airfoils from Delft University. It is found that the method is able to automatically create airfoils with equal or improved performance compared with the Delft designs. For the tested application, the adjustments performed to the XFOIL code improve the maximum lift, post stall, and the overall drag predictions.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.titleAirfoil optimization for wind turbine applicationen_US
dc.title.alternativeAirfoil optimization for wind turbine applicationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber502-514en_US
dc.source.volume21en_US
dc.source.journalWind Energyen_US
dc.source.issue7en_US
dc.identifier.doi10.1002/we.2174
dc.identifier.cristin1624953
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel