Enhanced CO2/H2 separation by GO and PVA-GO embedded PVAm nanocomposite membranes
Peer reviewed, Journal article
Published version
Date
2023Metadata
Show full item recordCollections
Original version
10.1016/j.memsci.2023.121397Abstract
Membrane technology for CO2/H2 separation, especially when using CO2-selective membranes to keep H2 on the high-pressure retentate side, has been considered promising and energy-efficient for further H2 transport and utilization. This work prepared and optimized a CO2-selective membrane based on polyvinylamine (PVAm) with embedded graphene oxide (GO) and grafted GO for CO2/H2 separation. The facilitated transport effect of PVAm enhances CO2 transport, while the GO-based 2D nanosheets bring in a barrier effect to compensate for the high H2 diffusivity. The GO-modified surface with higher CO2 affinity also provides additional CO2 sorption sites. The membranes’ chemical structure, thermal stability, and morphology were characterized. The effects of GO and PVA-GO in the PVAm matrix and optimal loadings of GO or PVA-GO were investigated. Introducing GO into PVAm significantly increased CO2 permeance with a slight increase in CO2/H2 selectivity. While by adding 0.5 wt% PVA-GO, CO2/H2 selectivity significantly increased from 10 to 22. The selective layer thickness also greatly affects CO2/H2 separation. By increasing the coating layer thickness to approx. 11 μm, the CO2/H2 selectivity substantially increased. The separation performances of the studied membrane are far above the current CO2/H2 upper bound.