• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable Visualization for Morphing Attack Detection

Myhrvold, Henning; Zhang, Haoyu; Tapia, Juan; Ramachandra, Raghavendra; Busch, Christoph Günther
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
NISK_2022___SMADLRP.pdf (2.425Mb)
URI
https://hdl.handle.net/11250/3057623
Date
2022
Metadata
Show full item record
Collections
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [2812]
  • Publikasjoner fra CRIStin - NTNU [41955]
Abstract
Detecting morphed face images has become critical for maintaining trust in automated facial biometric verification systems. It is well demonstrated that better biometric performance of the Face Recognition System (FRS) results in higher vulnerability to face morphing attacks. Morphing can be understood as a technique to combine two or more look-alike facial images corresponding to the attacker and an accomplice, who could apply for a valid passport by exploiting the accomplice’s identity. Morphing Attack Detection (MAD), with the help of Convolutional Neural Networks (CNN), has demonstrated good performance in detecting morphed images. However, they lack transparency, and it is unclear how they differentiate between bona fide and morphed facial images. As a result, this phenomenon needs careful consideration for safety and security-related applications. This paper will explore Layer-wise Relevance Propagation (LRP) to determine the most relevant features. We fine-tune a VGG pre-trained network for face morphing attack detection and LRP is then used to investigate the decision-making processes to understand what input pixels take part in the attack detection. This paper shows that CNN considers only a small part of the image, usually around the eyes, nose, and mouth.
Publisher
NIKT stiftelsen
Journal
Norsk Informasjonssikkerhetskonferanse (NISK)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit