Multichannel Residual Cues for Fine-Grained Classification in Wireless Capsule Endoscopy
Peer reviewed, Journal article
Published version
Date
2022Metadata
Show full item recordCollections
Abstract
Early diagnosis of gastrointestinal pathologies leads to timely medical intervention and prevents disease development. Wireless Capsule Endoscopy (WCE) is used as a non-invasive alternative for gastrointestinal examination. WCE can capture images despite the structural complexity presented by human anatomy and can help in detecting pathologies. However, despite recent progress in fine-grained pathology classification and detection, limited works focus on generalization. We propose a multi-channel encoder-decoder network for learning a generalizable fine-grained pathology classifier. Specifically, we propose to use structural residual cues to explicitly impose the network to learn pathology traces. While residuals are extracted using well-established 2D wavelet decomposition, we also propose to use colour channels to learn discriminative cues in WCE images (like red color in bleeding). With less than 40% data (fewer than 2500 labels) used for training, we demonstrate the effectiveness of our approach in classifying different pathologies on two different WCE datasets (different capsule modalities). With a comprehensive benchmark for WCE abnormality and multi-class classification, we illustrate the generalizability of the proposed approach on both datasets, where our results perform better than the state-of-the-art with much fewer labels in abnormality sensitivity on several of nine different pathologies and establish a new benchmark with specificity >97% across classes.