dc.contributor.author | Haugseng, Rune | |
dc.date.accessioned | 2023-02-22T11:30:47Z | |
dc.date.available | 2023-02-22T11:30:47Z | |
dc.date.created | 2022-04-08T10:52:42Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Journal of Pure and Applied Algebra. 2022, 226 (2), . | en_US |
dc.identifier.issn | 0022-4049 | |
dc.identifier.uri | https://hdl.handle.net/11250/3053200 | |
dc.description.abstract | In this short note we prove that two definitions of (co)ends in ∞-categories, via twisted arrow ∞-categories and via ∞-categories of simplices, are equivalent. We also show that weighted (co)limits, which can be defined as certain (co)ends, can alternatively be described as (co)limits over left and right fibrations, respectively. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | On (co)ends in ∞-categories | en_US |
dc.title.alternative | On (co)ends in ∞-categories | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | publishedVersion | en_US |
dc.source.pagenumber | 0 | en_US |
dc.source.volume | 226 | en_US |
dc.source.journal | Journal of Pure and Applied Algebra | en_US |
dc.source.issue | 2 | en_US |
dc.identifier.doi | 10.1016/j.jpaa.2021.106819 | |
dc.identifier.cristin | 2016129 | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |