Vis enkel innførsel

dc.contributor.authorHunvik, Kristoffer William Bø
dc.contributor.authorLima, Rodrigo José Da Silva
dc.contributor.authorKirch, Alexsandro
dc.contributor.authorLoch, Patrick
dc.contributor.authorMonceyron Røren, Paul
dc.contributor.authorHoffmann Petersen, Martin
dc.contributor.authorRudić, Svemir
dc.contributor.authorGarcía Sakai, Victoria
dc.contributor.authorKnudsen, Kenneth Dahl
dc.contributor.authorRodrigues Miranda, Caetano
dc.contributor.authorBreu, Josef
dc.contributor.authorFossum, Jon Otto
dc.contributor.authorBordallo, Heloisa N.
dc.date.accessioned2023-02-21T13:57:15Z
dc.date.available2023-02-21T13:57:15Z
dc.date.created2022-10-21T12:29:12Z
dc.date.issued2022
dc.identifier.citationJournal of Physical Chemistry C. 2022, 126 (40), 17243-17254.en_US
dc.identifier.issn1932-7447
dc.identifier.urihttps://hdl.handle.net/11250/3052816
dc.description.abstractDeveloping new technologies for carbon sequestration and long-term carbon storage is important. Clay minerals are interesting in this context as they are low-cost, naturally abundant, can adsorb considerable amounts of CO2, and are present in storage sites for anthropogenic carbon. Here, to better understand the intercalation mechanisms of CO2 in dehydrated and hydrated synthetic Na-fluorohectorite clay, we have combined powder X-ray diffraction, inelastic and quasi-elastic neutron scattering, and density functional theory calculations. For dehydrated Na-fluorohectorite, we observe no crystalline swelling or spectroscopic changes in response to CO2, whereas for the hydrated case, damping of the librational modes related to the intercalated water was clearly observed. These findings suggest the formation of a more disordered water coordination in the interlayer associated with highly confined water molecules. From the simulations, we conclude that intercalated water molecules decrease the layer–layer cohesion energy and create physical space for CO2 intercalation. Furthermore, we confirm that interlayer confinement reduces the Na+ hydration number when compared to that in bulk aqueous water, which may allow for proton transfer and hydroxide formation followed by CO2 adsorption in the form of carbonates. The experimental results are discussed in the context of previous and present observations on, a similar smectite, Ni-fluorohectorite, for which it is established that CO2 attaches to the edge of nickel hydroxide islands present in the interlayer.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInfluence of CO2 on Nanoconfined Water in a Clay Mineralen_US
dc.title.alternativeInfluence of CO2 on Nanoconfined Water in a Clay Mineralen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17243-17254en_US
dc.source.volume126en_US
dc.source.journalJournal of Physical Chemistry Cen_US
dc.source.issue40en_US
dc.identifier.doi10.1021/acs.jpcc.2c03310
dc.identifier.cristin2063693
dc.relation.projectNorges forskningsråd: 315135en_US
dc.relation.projectNorges forskningsråd: 280643en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal