• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localized corrosion damage prediction of steel plates in marine applications using quadrilateral inverse-shell elements based on iFEM

Ghasemzadeh, Maryam; Mokhtari, Mojtaba; Kefal, Adnan
Chapter
Published version
View/Open
Localized+corrosion+damage+prediction+of+steel+plates+in+marine+applications+using+quadrilateral+inverse-shell+elements+based+on+iFEM.pdf (Locked)
URI
https://hdl.handle.net/11250/3051829
Date
2022
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [3632]
  • Publikasjoner fra CRIStin - NTNU [41869]
Original version
10.1201/9781003358961-17
Abstract
This research effort focuses on a damage detection strategy for identifying pitting corrosion locations in corroded marine structures using numerical approaches. To this end, a four-node quadrilateral inverse shell element (iQS4) is implemented to apply the inverse finite element method (iFEM). At first, a high-fidelity finite element model of a corroded specimen with a semi-elliptical pit and a curved plate with a rectangular pit in the center are developed using the commercial software Abaqus to produce the strain-sensor data. These strain data are used as an input of the iFEM formulation to reconstruct the displacement and continuous strains of the corroded samples. Then, the corrosion damage index is defined based on the difference between the equivalent strain of the corroded and intact model. A single pit in a critical point can cause a great deal of damage; therefore, higher values of the damage index reveal the location of the pits. Moreover, to increase the practicality of the proposed method, sensors are removed from the corroded zone to estimate the damage distribution with sensors mounted in the intact parts of the specimen. Finally, in both full and reduced sensor cases, the predicted pit locations show high consistency with the reference numerical solutions.
Publisher
CRC Press

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit