Vis enkel innførsel

dc.contributor.authorJouhten, Paula
dc.contributor.authorKonstantinidis, Dimitrios
dc.contributor.authorPereira, Filipa
dc.contributor.authorAndrejev, Sergej
dc.contributor.authorGrkovska, Kristina
dc.contributor.authorCastillo, Sandra
dc.contributor.authorGhiachi, Payam
dc.contributor.authorBeltran, Gemma
dc.contributor.authorAlmaas, Eivind
dc.contributor.authorMas, Albert
dc.contributor.authorWarringer, Jonas
dc.contributor.authorGonzalez, Ramon
dc.contributor.authorMorales, Pilar
dc.contributor.authorPatil, Kiran R.
dc.date.accessioned2023-01-30T14:02:23Z
dc.date.available2023-01-30T14:02:23Z
dc.date.created2022-10-24T14:10:04Z
dc.date.issued2022
dc.identifier.citationMolecular Systems Biology. 2022, 18 (10), e10980-?.en_US
dc.identifier.issn1744-4292
dc.identifier.urihttps://hdl.handle.net/11250/3047205
dc.description.abstractAdaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.en_US
dc.language.isoengen_US
dc.publisherWiley Open Accessen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePredictive evolution of metabolic phenotypes using model-designed environmentsen_US
dc.title.alternativePredictive evolution of metabolic phenotypes using model-designed environmentsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumbere10980-?en_US
dc.source.volume18en_US
dc.source.journalMolecular Systems Biologyen_US
dc.source.issue10en_US
dc.identifier.doi10.15252/msb.202210980
dc.identifier.cristin2064491
dc.relation.projectNorges forskningsråd: 245160en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal