A new high-content screening assay of the entire hepatitis B virus life cycle identifies novel antivirals
Yang, Jaewon; König, Alexander; Park, Soonju; Jo, Eunji; Sung, Pil Soo; Yoon, Seung Kew; Zusinaite, Eva; Kainov, Denis; Shum, David; Windisch, Marc Peter
Peer reviewed, Journal article
Published version

View/ Open
Date
2021Metadata
Show full item recordCollections
Abstract
Background & Aims: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. Methods: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. Results: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 μM; 50% cytotoxic concentration [CC50] >50 μM) and cytochalasin D (EC50 0.07 μM; CC50 >50 μM), and 2 late inhibitors, fludarabine (EC50 0.1 μM; CC50 13.4 μM) and dexmedetomidine (EC50 6.2 μM; CC50 >50 μM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 μM) and dexmedetomidine (EC50 8.7 μM). Conclusions: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events.