• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A large scale approach to decomposition spaces

Luef, Franz; Berge, Eirik
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
A_Large_Scale_Approach_to_Decomposition_Spaces___Third_Version.pdf (466.1Kb)
URI
https://hdl.handle.net/11250/3040529
Date
2022
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2246]
  • Publikasjoner fra CRIStin - NTNU [35017]
Original version
Studia Mathematica. 2022, 265 257-301.   10.4064/sm201217-4-1
Abstract
Decomposition spaces are a class of function spaces constructed out of “well-behaved” coverings and partitions of unity of a set. The structure of the covering determines the properties of the decomposition space. Besov spaces, shearlet spaces, and modulation spaces are well-known decomposition spaces. In this paper, we focus on the geometric aspects of decomposition spaces and utilize that these are naturally captured by the large scale properties of a metric space associated to the covering. We demonstrate that decomposition spaces constructed out of quasi-isometric covered spaces have many geometric features in common.

The notion of geometric embedding is introduced to formalize the way one decomposition space can be embedded into another decomposition space while respecting the geometric features of the coverings. Some consequences of the large scale approach to decomposition spaces are (i) the comparison of coverings of different sets, (ii) the study of embeddings of decomposition spaces based on the geometric features and the symmetries of the coverings, and (iii) the use of notions from large scale geometry, such as asymptotic dimension or hyperbolicity, to study the properties of decomposition spaces.
Publisher
Instytut Matematyczny
Journal
Studia Mathematica

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit