Vis enkel innførsel

dc.contributor.advisorVinogradov, Alexey
dc.contributor.advisorBerto, Filippo
dc.contributor.authorSendrowicz, Aleksander
dc.date.accessioned2022-11-10T11:58:50Z
dc.date.available2022-11-10T11:58:50Z
dc.date.issued2022
dc.identifier.isbn978-82-326-6272-2
dc.identifier.issn2703-8084
dc.identifier.urihttps://hdl.handle.net/11250/3031155
dc.description.abstractA synergy from three modern in situ techniques - infrared thermography, digital image correlation, and acoustic emission - used concurrently has been obtained to gain deeper insight into deformation kinetics and energy partitioning in monotonic tensile tests performed on various representative structural materials. Multiple experimental challenges have been addressed, and the specific methodological procedures developed to mitigate them are described in great detail. The original experimental setup designed in the present work is used to unite a wealth of data acquired to meet the above stated objective. Integrated in the experimental design, a thermodynamic modelling methodology is presented, based on the first law of thermodynamics and informed by the dislocation evolution theory inspired by the classic Kocks and Mecking formalism. The advantage of the model is that only physically motivated variables are used, and the outcome, a successful prediction of energy partitioning in materials with dislocation mediated plasticity in monotonic deformation. On the basis of the unifying thermodynamic principles and the first-order dislocation kinetics, interlinked models are proposed for the energy storage as well as dissipation in the form of heat and acoustic emission. The model strategy is verified using austenitic 316L stainless steel and a set of CuZn alloys with varying Zn content and stacking fault energies, controlling dislocation mobility. The combination of infrared thermography and acoustic emission is used to characterise the evolution of dislocation ensembles through the developed model link providing direct access to the fundamental properties of dislocation kinetics. The factors controlling the dislocation production and dynamic recovery rates in the strain hardening process, are recovered for the first time from the modelbased acoustic emission, and infrared thermography analyses respectively. Consequently, the developed toolset can be used as a powerful means for prediction of the strain hardening behaviour and quantitative evaluation of the dislocation kinetics in situ.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2022:347
dc.relation.haspartPaper 1: Sendrowicz, Aleksander; Myhre, Aleksander Omholt; Wierdak, Seweryn Witold; Vinogradov, Alexey. Challenges and Accomplishments in Mechanical Testing Instrumented by In Situ Techniques: Infrared Thermography, Digital Image Correlation, and Acoustic Emission. Applied Sciences 2021 ;Volum 11.(15) https://doi.org/10.3390/app11156718 This is an open access article distributed under the Creative Commons Attribution License (CC BY 4.0) ( http://creativecommons.org/licenses/by/4.0/ )en_US
dc.relation.haspartPaper 2: Sendrowicz, Aleksander; Myhre, Aleksander Omholt; Yasnikov, I.S.; Vinogradov, Alexei. Stored and dissipated energy of plastic deformation revisited from the viewpoint of dislocation kinetics modelling approach. Acta Materialia 2022 ;Volum 237. https://doi.org/10.1016/j.actamat.2022.118190 This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )en_US
dc.relation.haspartPaper 3: Sendrowicz, Aleksander; Myhre, Aleksander Omholt; Danyuk, A.V.; Vinogradov, Alexei. Dislocation kinetics explains energy partitioning during strain hardening: Model and experimental validation by infrared thermography and acoustic emission. Materials Science & Engineering: A 2022 ;Volum 856. https://doi.org/10.1016/j.msea.2022.143969 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.titleInvestigation and modelling of plastic deformation aided by in situ monitoring techniquesen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Technology: 500::Mechanical engineering: 570en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel