Vis enkel innførsel

dc.contributor.authorMhaya, Akram M.
dc.contributor.authorHajmohammadian Baghban, Mohammad
dc.contributor.authorFaridmehr, Iman
dc.contributor.authorHuseien, Ghasan Fahim
dc.contributor.authorAbidin, Ahmad Razin Zainal
dc.contributor.authorIsmail, Mohammad
dc.date.accessioned2022-10-31T10:13:42Z
dc.date.available2022-10-31T10:13:42Z
dc.date.created2021-08-18T16:04:30Z
dc.date.issued2021
dc.identifier.citationMaterials. 2021, 14 (8), .en_US
dc.identifier.issn1996-1944
dc.identifier.urihttps://hdl.handle.net/11250/3029075
dc.description.abstractRecycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePerformance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environmentsen_US
dc.title.alternativePerformance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environmentsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber25en_US
dc.source.volume14en_US
dc.source.journalMaterialsen_US
dc.source.issue8en_US
dc.identifier.doi10.3390/ma14081900
dc.identifier.cristin1927040
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal