A Feasibility Study of a Renewable-Energy Supply for an Offshore Oil and Gas Installation
Master thesis
Date
2022Metadata
Show full item recordCollections
- Institutt for marin teknikk [3471]
Abstract
En hydrodynamisk studie av en flytende vindturbin plassert i Nordsjøen på 130 meters dyp er utført. OO Star Wind Floater som består av en halvt nedsenkbar konstruksjon som støtter referansevindturbinen DTU 10 MW. Den flytende vindturbinen er studert med den forutsetning at de er aerodynamisk og hydrodynamisk uavhengige av hverandre. Etter å ha utviklet en numerisk panelmodell i GeniE, ble strukturens hydrodynamiske parametere bestemt ved bruk av førsteordens og andreordens frekvensdomeneanalyse i HydroD. Den numeriske modellen ble verifisert, og funnene fra førsteordens frekvensdomeneanalyse ble sammenlignet med LIFES50+-prosjektets resultater, som viste god samsvar.
Egenskapene hentet fra frekvensdomeneanalysene ble deretter importert til SIMA, som ble brukt til å kjøre tidsdomene-simuleringer. Hovedmålet var å undersøke FWTs oppførsel under operasjonelle og ekstreme forhold. Tre ulike modeller ble brukt for å vurdere de numeriske modellenes anvendelighet, overlevelsesevne og operabilitet under operasjonelle og ekstreme forhold. Modellene simulert i en koblet tidsdomeneanalyse var basert på resultater fra; førsteordens frekvensdomeneanalysemodell, andreordens frekvensdomeneanalyse med Newmans tilnærming for å løse bølgedempning og andre-ordens frekvensdomeneanalyse med full QTF.
Resultatene demonstrerte behovet for å ta hensyn til andre-ordens effekter når man fanger lavfrekvente bevegelser. Newmans tilnærming ble vist å være tilstrekkelig, sammenlignet med analyser ved bruk av en differanse-frekvense full QTF.
De maksimale verdiene for fortøyningslinespenningen ble underestimert ved bruk av lineær potensialteori sammenlignet med den fullstendige QTF-modellen for load case 1.EX. Forskjellen var 27.67 % for linje 1, som opplevde de største spenningene. I teorien skyldtes dette at den lineære modellen ikke tok hensyn til andre-ordens effekter i lavfrekvente bevegelser.
Til slutt ble det presentert tre forskjellige layoutkonsepter som besto av fire FWT-er, plassert i forskjellige mønstre. Konseptene var basert på en litteraturstudie hvor aerodynamiske wake-effekter ble tatt spesielt hensyn til. Det foretrukne layoutkonseptet presenterer FWT-ene i en enkel rad, med en sidevindsavstand på 4D. Utformingen av vindparken var basert på designet til WindFloat Atlantic og beslutningen var basert på litteraturgjennomgangen foretatt om krav til forebygging av wake-interaksjoner og plassering av turbinene. The feasibility of an offshore wind concept consisting of four floating wind turbines operating at a depth of 130 meters has been investigated. The OO Star Wind Floater consisting of a semi-submersible substructure supporting the 10 MW DTU reference wind turbine were analysed. The FWT are studied on the premise that they are aerodynamically and hydrodynamically independent of one another. After developing a numerical panel model in GeniE, the structure's hydrodynamic parameters were determined using first-order and second-order frequency domain analysis in HydroD. The numerical model was verified, and the findings of first-order frequency domain analysis were compared to the LIFES50+ project's results, which showed good agreement. The numerical models were verified using the results of HydroD's hydrodynamic analysis and free decay tests in SIMA. The verification, which was deemed adequate, compared mean drift forces, natural periods, and QTFs.
The properties acquired from the frequency domain analyses were then imported into SIMA, which was used to run time-domain simulations. The main goal was to investigate the FWT's behavior in operational and extreme conditions. Three different models were used to assess the numerical model's applicability, survivability, and operability under operational and extreme conditions. The models simulated in a coupled time-domain analysis were based on results from:
- First-order frequency domain analysis model 1.M.
- Second-order frequency domain analysis with wave drift damping calculated with wave loads calculated with Newman's approximation 2.M.
- Second-order frequency domain analysis with full QTF 3.M.
The results demonstrated the need of taking second-order effects into account when capturing low-frequency movements. Newman's approximations were shown to be quite accurate when compared to analyses using a full quadratic transfer function.
The maximum values of the mooring line tension were underestimated using linear potential theory compared to the full QTF model for load case 1.EX. The difference was 27.67 % for line 1, which experienced the largest tensions. In theory, this was due to the linear model not accounting for second-order effects in low-frequency motions, hence the second-order effects were determined to be particularly relevant to consider.
Lastly, three different layout concepts were presented which consisted of four FWTs, placed in different patterns. The layout concepts were based on a literature study, where aerodynamic wake effects were given a particular consideration. The selected layout concept presents the FWTs in a single row with a crosswind spacing distance of 4D. The design of the wind farm was based on the design of WindFloat Atlantic and the decision was based on the literature review conducted on requirements for prevention of wake interactions and placement of the turbines.