Vis enkel innførsel

dc.contributor.advisorNæss, Erling
dc.contributor.advisorBordvik, Silje
dc.contributor.authorNybu, Simen Lillekjendlie
dc.date.accessioned2022-10-01T17:25:25Z
dc.date.available2022-10-01T17:25:25Z
dc.date.issued2022
dc.identifierno.ntnu:inspera:110276279:50634483
dc.identifier.urihttps://hdl.handle.net/11250/3023110
dc.description.abstractIceland Deep Drilling Project (IDDP) er et prosjekt som sikter seg inn på å forbedre prosessen og øke potensialet til geotermisk energi ved hjelp av varmeutvinning av fluider langt nede i jordskorpen. Disse fluidene har betydelig høye trykk og temperaturer og kan kvalifiseres som superkritiske[1]. Dette kan føre til en høyere effekt oppnådd, som følge av det økte energipotensialet. Denne teknologien er for øvrig fortsatt under utvikling. En av hovedgrunnene til at dette er at det har blitt oppdaget en gradvis avsetning av silica partikler på overflater av rør og utstyr [2]. Dette vil dermed føre til begroing. En numerisk modell for simulering av strømningsfeltet og partikkelavsetningen i den eksperimentelle kaskadetesten gjort i IDDP er designet ved bruk av programvaren Ansys 2021 R2. En samsvarende geometri til kaskadetesten er modellert, i tillegg til at strømningen er simulert for denne modellen. Stordal konkluderte med at Reynolds Stress Equation Modellen (RSM) er ideell for å simulere turbulensen i strømningen, og denne modellen ble derfor implementert i denne masteroppgaven også. Etter at strømningen var satt ble partiklene injisert, og de ulike kreftene og mekanismene som virket på partikkelen ble implementert for å gi et bilde av hvordan partiklene ville bevege seg i strømningen. Partikkelavsetningen på veggen i geometrien ble observert og illustrert ved å bruke den innebygde målemetoden kalt akkresjonsrate. Det ble observert at partikkelavsetningen ble fordelt mer jevnt over geometrien for de mindre partiklene. Når trykket i domenet avtok, ble det observert at partikkelavsetningen var mer konsentrert til bare noen få regioner. Dette fenomenet avviker imidlertid fra observasjonene gjort i IDDP kaskadetesten, hvor partiklene ble mer jevnt fordelt ettersom trykket sank. Partikkelavsetningen ble også forsøkt kvantifisert, men dette resulterte i en stor overestimering ved bruk av den nevnte akkresjonsraten. Det bør også bemerkes at i mangel på en mer passende discrete random walk modell (DRW), måtte standard DRW-modellen til Fluent brukes. Denne modellen har vist seg å overestimere partikkelavsetning også [3], noe som også fører til overpredikasjon av partikkelavsetningen. Dermed ble det konkludert med at det anbefales en forbedring av sporingen av partikkelavsetning for å oppnå et riktigere bilde av den aktuelle avsetningen.
dc.description.abstractThe Iceland Deep Drilling Project (IDDP) is a project aiming to improve the economics of geothermal energy through heat extraction from supercritical geothermal fluids [1]. This may lead to a higher order of power output, due to the increased energy potential. This technology is however under development. One of the reasons for this is the gradual deposition of silica particles from the supercritical steam onto the pipe surfaces and process equipment are of such a high rate, which automatically results in fouling [2]. A numerical model for the simulation of fluid flow and particle deposition representing the IDDP cascade experiment is established using the Ansys 2021 R2 software. A geometry illustrating the cascade impactor is created, and the flow is modelled using this particular model. The concluded remarks of Stordal is employed in the numerical model, namely by imposing the Reynolds stress equation model (RSM) for the turbulence mean flow simulation. Subsequently, particles were injected, and the relative motion of particles were tracked through the various forces and mechanisms acting on the particles. The particle deposition was monitored and illustrated using the in-built Fluent particle deposition monitor rate, namely the accretion rate. It was discovered that the particle deposition was distributed more uniformly over the domain for the smaller particles. When the pressure in the domain decreased, it was observed that the particle deposition were more concentrated to only a few regions. However, this phenomena deviates from the observations made in the IDDP experimental tests, where an increasing uniformly deposition occurred when the pressure decreased. The particle deposition was attempted quantified, and a severe overestimation was observed using the accretion rate. It should also be noted that in the lack of a more suitable discrete random walk (DRW) model, the default DRW model of Fluent had to be employed. This model have been found to overestimate particle deposition as well [3]. Thus it was concluded that an enhancement of the particle deposition tracking is recommended.
dc.languageeng
dc.publisherNTNU
dc.titleNumerical simulations of fluid flow and particle deposition in a cascade impactor
dc.typeMaster thesis


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel