Vis enkel innførsel

dc.contributor.authorVan Malderen, Roeland
dc.contributor.authorPottiaux, E.
dc.contributor.authorKlos, A.
dc.contributor.authorDomonkos, P.
dc.contributor.authorElias, M.
dc.contributor.authorNing, T.
dc.contributor.authorBock, O.
dc.contributor.authorGuijarro, J.
dc.contributor.authorAlshawaf, F.
dc.contributor.authorHoseini, Mostafa
dc.contributor.authorQuarello, A.
dc.contributor.authorLebarbier, E.
dc.contributor.authorChimani, B.
dc.contributor.authorTornatore, V.
dc.contributor.authorZengin Kazancı, S.
dc.contributor.authorBogusz, J.
dc.date.accessioned2022-09-29T13:37:18Z
dc.date.available2022-09-29T13:37:18Z
dc.date.created2020-12-29T03:25:44Z
dc.date.issued2020
dc.identifier.citationEarth and Space Science. 2020, 7 (5), .en_US
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/11250/3022578
dc.description.abstractWe assess the performance of different break detection methods on three sets of benchmark data sets, each consisting of 120 daily time series of integrated water vapor differences. These differences are generated from the Global Positioning System (GPS) measurements at 120 sites worldwide, and the numerical weather prediction reanalysis (ERA‐Interim) integrated water vapor output, which serves as the reference series here. The benchmark includes homogeneous and inhomogeneous sections with added nonclimatic shifts (breaks) in the latter. Three different variants of the benchmark time series are produced, with increasing complexity, by adding autoregressive noise of the first order to the white noise model and the periodic behavior and consecutively by adding gaps and allowing nonclimatic trends. The purpose of this “complex experiment” is to examine the performance of break detection methods in a more realistic case when the reference series are not homogeneous. We evaluate the performance of break detection methods with skill scores, centered root mean square errors (CRMSE), and trend differences relative to the trends of the homogeneous series. We found that most methods underestimate the number of breaks and have a significant number of false detections. Despite this, the degree of CRMSE reduction is significant (roughly between 40% and 80%) in the easy to moderate experiments, with the ratio of trend bias reduction is even exceeding the 90% of the raw data error. For the complex experiment, the improvement ranges between 15% and 35% with respect to the raw data, both in terms of RMSE and trend estimations.en_US
dc.description.abstractHomogenizing GPS Integrated Water Vapor Time Series: Benchmarking Break Detection Methods on Synthetic Data Setsen_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.urihttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EA001121
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectGNSSen_US
dc.subjectGNSSen_US
dc.subjectClimate changeen_US
dc.subjectKlimaendringeren_US
dc.subjectAtmosfære og klimaen_US
dc.subjectAtmosphere and climateen_US
dc.titleHomogenizing GPS Integrated Water Vapor Time Series: Benchmarking Break Detection Methods on Synthetic Data Setsen_US
dc.title.alternativeHomogenizing GPS Integrated Water Vapor Time Series: Benchmarking Break Detection Methods on Synthetic Data Setsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.subject.nsiVDP::Technology: 500en_US
dc.source.pagenumber20en_US
dc.source.volume7en_US
dc.source.journalEarth and Space Scienceen_US
dc.source.issue5en_US
dc.identifier.doi10.1029/2020EA001121
dc.identifier.cristin1863686
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal