Show simple item record

dc.contributor.advisorTorgersen, Jan
dc.contributor.authorSvartvatn, Preben Johnsen
dc.date.accessioned2022-09-28T17:42:50Z
dc.date.available2022-09-28T17:42:50Z
dc.date.issued2022
dc.identifierno.ntnu:inspera:114172731:24001820
dc.identifier.urihttps://hdl.handle.net/11250/3022392
dc.descriptionFull text not available
dc.description.abstractTo reduce CO2 emissions and reach the ambitious goals towards a greener world, it is crucial to develop more emission-free transport sources. A promising technology for a greener automobile industry is proton-exchange membrane fuel cells (PEMFC). However, PEMFCs still suffer from high-performance losses and need further development to mitigate these. A critical component that needs development to push the performance of the next generation PEMFCs is the gas diffusion layer (GDL). A key challenge for improving the performance of a PEMFC is the water management in GDLs. At high current densities, liquid water accumulation in the GDL decreases the performance of a fuel cell due to reduced oxygen diffusion caused by flooding. Novel work has shown promising results in utilizing ordered structures to improve the water management. However, numerous assumptions and decisions related to the state-of-the-art modeling of gas-water dynamics in the GDL are not well documented and the need for improvements of the state-of-the-art modeling is necessary. This thesis enlightens these challenges, assumptions and proposes a further developed 2D model, of a GDL/gas-channel (GC) system, that allows for a more realistic depiction of the gas dynamics than the state-of-the-art modeling techniques. To allow for oxygen circulation through the GDL, source terms are implemented via UDFs in Ansys Fluent. In addition, an investigation related to the significance of the water inlet conditions and oxygen conditions and how these affect the potential outcomes when investigating the gas-water dynamics in a 2D model is done. The impact of oxygen flow in the GC, on the water topology and percolation in the GDL, is negligible. However, the impact of oxygen circulation and consumption in the GDL can provide differences in the water topology and water percolation and thus is seen as necessary in cases where oxygen entrapment occur near the GDL and catalyst layer interface. The results show that the placement of the water inlets has a significant effect on the developed water paths through the GDL, emphasizing the importance of accurate descriptions of water transport to the GDL. The dependency on water management related to the water inlet conditions shows that the potential of optimization of the GDL, through these kind of simulations, are limited. The findings suggests that more resources and knowledge is required to allow for a more thorough optimization of ordered GDLs, not limited to specific assumptions and biased by the water inlet conditions.
dc.description.abstractFor å redusere CO2-utslipp og nå de ambisiøse målene mot en grønnere verden, er det avgjørende å utvikle flere utslippsfrie transportkilder. En lovende teknologi for en grønnere transportindustri er proton-utvekslings membran brenselceller (PEMFC). PEMFCer lider imidlertid av tap ved høy ytelse operasjoner og trenger videre utvikling for å redusere disse. En kritisk komponent som trenger videreutvikling for å presse ytelsen til neste generasjons PEMFCer er gassdiffusjonslaget (GDL). En sentral utfordring for å forbedre ytelsen til en PEMFC er vannhåndteringen i GDL. Ved høye strømtettheter reduserer akkumulering av flytende vann, i GDL, ytelsen til brenselcellen som en konsekvens av redusert oksygendiffusjon forårsaket av oversvømming. Nytt arbeid har vist lovende resultater med å utnytte ordnede strukturer for å forbedre vannhåndtering i GDL. Flere antagelser og beslutninger knyttet til dagens modellering av dynamikken til gass og vann i GDL, er diskutable og ikke godt dokumentert, og det er nødvendig med for forbedringer av dagens modeller. Denne oppgaven belyser disse utfordringene, antakelsene og foreslår en videreutviklet 2D-modell, av et GDL/gasskanal system (GC), som gir en mer realistisk beskrivelse av gassdynamikken enn de moderne modelleringsteknikkene. For å tillate oksygensirkulasjon gjennom GDL, implementeres source terms via UDF-er i Ansys Fluent. I tillegg er det gjort undersøkelser tilknyttet betydningen av vanninnløpsforholdene og oksygenforholdene og hvordan disse påvirker potensielle resultat ved simuleringer av gass-vann dynamikken i en 2D-modell. Oppgaven fremhever viktigheten av˚a gi realistiske vanninnløpsforhold for˚a tillate videreutvikling av strukturerte GDL. Påvirkningen av oksygenstrøm i GC, på vanntopologi og transport i GDL, er ubetydelig. Derimot er påvirkninger av oksygensirkulasjon og forbruk i GDL betydelig og kan gi forskjeller i vanntopologien og vanngjennomtrengningen og anses derfor som nødvendig i tilfeller der innestengning av oksygen forekommer nær kontaktflaten mellom GDL og katalysatorlaget. Resultatene viser at plassering av vanninntakene har en betydelig effekt på vannveiene gjennom GDL, og understreker viktigheten av nøyaktige beskrivelser av vanntransport til GDL. Vanninløpsforholdenes påvirkning på vannhåndteringen viser at potensialet for optimalisering av GDL, gjennom denne typen simuleringer, er begrenset. Funnene peker på at det kreves mer ressurser og kunnskap for å tillate en mer grundig optimalisering av ordnede GDL, som ikke er begrenset til spesifikke antagelser og forutinntatt av vanninnløpsforholdene.
dc.languageeng
dc.publisherNTNU
dc.titleModeling of Transport Phenomena in Structured Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells
dc.typeMaster thesis


Files in this item

FilesSizeFormatView

This item appears in the following Collection(s)

Show simple item record