Vis enkel innførsel

dc.contributor.authorTisserant, Alexandre
dc.contributor.authorMorales, Marjorie
dc.contributor.authorCavalett, Otávio
dc.contributor.authorO'Toole, Adam
dc.contributor.authorWeldon, Simon Mark
dc.contributor.authorRasse, Daniel
dc.contributor.authorCherubini, Francesco
dc.date.accessioned2022-06-28T10:59:29Z
dc.date.available2022-06-28T10:59:29Z
dc.date.created2021-12-28T13:35:21Z
dc.date.issued2021
dc.identifier.citationResources, Conservation and Recycling. 2021, 179 .en_US
dc.identifier.issn0921-3449
dc.identifier.urihttps://hdl.handle.net/11250/3001294
dc.description.abstractLimiting temperature rise below 2 °C requires large deployment of Negative Emission Technologies (NET) to capture and store atmospheric CO2. Compared to other types of NETs, biochar has emerged as a mature option to store carbon in soils while providing several co-benefits and limited trade-offs. Existing life-cycle assessment studies of biochar systems mostly focus on climate impacts from greenhouse gasses (GHGs), while other forcing agents, effects on soil emissions, other impact categories, and the implications of a large-scale national deployment are rarely jointly considered. Here, we consider all these aspects and quantify the environmental impacts of application to agricultural soils of biochar from forest residues available in Norway considering different scenarios (including mixing of biochar with synthetic fertilizers and bio-oil sequestration for long-term storage). All the biochar scenarios deliver negative emissions under a life-cycle perspective, ranging from -1.72 ± 0.45 tonnes CO2-eq. ha−1 yr−1 to -7.18 ± 0.67 tonnes CO2-eq. ha−1 yr−1 (when bio-oil is sequestered). Estimated negative emissions are robust to multiple climate metrics and a large range of uncertainties tested with a Monte-Carlo analysis. Co-benefits exist with crop yields, stratospheric ozone depletion and marine eutrophication, but potential trade-offs occur with tropospheric ozone formation, fine particulate formation, terrestrial acidification and ecotoxicity. At a national level, biochar has the potential to offset between 13% and 40% of the GHG emissions from the Norwegian agricultural sector. Overall, our study shows the importance of integrating emissions from the supply chain with those from agricultural soils to estimate mitigation potentials of biochar in specific regional contexts.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleLife-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agricultureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17en_US
dc.source.volume179en_US
dc.source.journalResources, Conservation and Recyclingen_US
dc.identifier.doi10.1016/j.resconrec.2021.106030
dc.identifier.cristin1972459
dc.relation.projectNorges forskningsråd: 281113en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal