• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAV

Ho, Tu Dac; Grøtli, Esten Ingar; Johansen, Tor Arne
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Ho (3.820Mb)
URI
https://hdl.handle.net/11250/2992648
Date
2021
Metadata
Show full item record
Collections
  • Institutt for teknisk kybernetikk [2849]
  • Publikasjoner fra CRIStin - NTNU [26648]
Original version
IEEE International Symposium on Consumer Electronics. 2021, .   10.1109/ICCE50685.2021.9427697
Abstract
In this paper, we consider a wireless sensor network of nodes at the sea surface drifting due to wind and sea currents. In our scenario an Unmanned Aerial Vehicle (UAV) will be used to gather data from the sensor nodes. The goal is to find a flyable path which is optimal in terms of sensor node energy consumption, total channel throughput between the UAV and sensor nodes, flight time for the UAV and frequency of the node visits by the UAV. Finally, the path should also be optimal concerning node position estimation uncertainty. A Kalman Filter (KF) is used to estimate the nodes motions and Particle Swarm Optimization (PSO) is the method used to calculate the UAV path taking all of these objectives into account. The proposed node tracking aware path planning solution is compared to two other scenarios: One where the path planning is based on full knowledge of the node positions at all times, and one where path planning is based on the last known positions of the nodes.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Journal
IEEE International Symposium on Consumer Electronics
Copyright
© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit