Vis enkel innførsel

dc.contributor.authorGuidi, Giuseppe
dc.contributor.authorSuul, Jon Are Wold
dc.contributor.authorFujimoto, Hiroshi
dc.date.accessioned2022-04-07T08:00:27Z
dc.date.available2022-04-07T08:00:27Z
dc.date.created2021-11-29T11:07:30Z
dc.date.issued2021
dc.identifier.isbn0-000-00001-9
dc.identifier.urihttps://hdl.handle.net/11250/2990388
dc.description.abstractThis paper deals with the problem of maximizing the energy transfer between infrastructure for inductive power transfer embedded in the road and a moving electric vehicle. The analysis is assuming a series-series compensated inductive power transfer architecture and the problem is solved analytically to obtain general solutions expressed in terms of basic coil parameters and coupling. Based on the analytical solutions, control algorithms aiming at maximum energy transfer during the vehicle motion are developed, resulting in optimal utilization of the infrastructure. Numerical simulations and experimental measurements are used to validate the proposed method. It is shown that by using power transfer maximization control, the amount of energy transferred from the road infrastructure to a moving vehicle can be significantly increased compared to using conventional techniques. In this paper, about 10% higher energy could be transferred without changing the current and voltage ratings of the coils and converters. Higher gain is expected for different system designs with road and on-board coils more similar in size. Copyright © 2021 Society of Automotive Engineers of Japan, Inc.en_US
dc.language.isoengen_US
dc.publisherSociety of Automotive Engineers of Japanen_US
dc.relation.ispartofProceedings of the 5th International Electric Vehicle Technology Conference, EVTeC 2021, Yokohama, Japan - Virtual Conference, 24-26 May 2021
dc.titleConditions for maximum energy transfer in inductive road-powered electric vehicle applications taking system limitations into accounten_US
dc.typeChapteren_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis chapter will not be available due to copyright restrictions by Society of Automotive Engineers of Japanen_US
dc.identifier.cristin1960717
dc.relation.projectNorges forskningsråd: 284231en_US
cristin.ispublishedtrue
cristin.fulltextpostprint


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel