• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Intelligence for Well Integrity Monitoring Based on EM Data

Hosseini, Seyed Ehsan; Zonetti, Simone; Romdhane, Mohamed Anouar; Dupuy, Bastien; Arntsen, Børge
Chapter
Published version
Thumbnail
Åpne
Hosseini (1.152Mb)
Permanent lenke
https://hdl.handle.net/11250/2988742
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Institutt for geovitenskap og petroleum [2169]
  • Publikasjoner fra CRIStin - NTNU [26591]
Sammendrag
Monitoring of integrity of plugged and abandoned (P&A'ed) wells is of interest for the oil and gas industry and for CO2 storage. The purpose of this study is to develop artificial intelligence (AI)-based approaches to detect anomalies or defects when monitoring permanently plugged wells. The studied solution is based on the analysis of electromagnetic (EM) data. We consider an offshore setting where the EM signal is generated in presence of a P&A'ed well and the resulting electric field is recorded at the seafloor. Numerical simulations are used to train an AI algorithm to classify the modelled EM features into predefined well integrity classes. We consider four scenarios: (1) no well, (2) well with three 20 meters thick cement barriers of thickness, (3) well with three cement barriers of 60 meters thickness, and (4) well with three cement barriers of 100 meters thickness. Convolutional neural networks (CNNs) are tested as the AI algorithm in this study. After training the algorithm on 80% of the data, it shows an accuracy of 95.36% on the test data. P&A'ed well integrity monitoring currently remains limited to local observation and symptom identification, but this study shows that there is great potential for developing remote non-invasive well integrity monitoring techniques.
Utgiver
SINTEF Academic Press
Opphavsrett
© 2021 The Authors. Published by SINTEF Academic Press.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit