• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

2D Numerical Study on Wake Scenarios for a Flapping Foil

XU, HUILI; Greco, Marilena; Lugni, Claudio
Chapter
Published version
Thumbnail
View/Open
Xu.pdf (1.610Mb)
URI
https://hdl.handle.net/11250/2988104
Date
2021
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [2853]
  • Publikasjoner fra CRIStin - NTNU [26591]
Original version
10.1115/OMAE2021-63738
Abstract
Fishes are talented swimmers. Depending on the propulsion mechanisms many fishes can use flapping tails and/or fins to generate thrust, which seems to be connected to the formation of a reverse von Kármán wake. In the present work, the flow past a 2D flapping foil is simulated by solving the incompressible Navier-Stokes equations in the open-source OpenFOAM platform. A systematic study by varying the oscillating frequency, peak-to-peak amplitude and Reynolds number has been performed to analyze the transition of vorticity types in the wake as well as drag-thrust transition. The overset grid method is used herein to allow the pitching foil to move without restrictions. Spatial convergence tests have been carried out with respect to grid resolution and the size of overset mesh domain. Numerical results are compared with available experimental data and discussed. The results show that the adopted methodology can be well applied to simulate large amplitude motions of the flapping foil. The transitions in the types of wake are consistent with the benchmark experimental data, and the drag-thrust transition of the pitching foil does not coincide with von Kármán (vK)-reverse von Kármán (reverse-vK) wake transition and it is highly dependent on the Reynolds number.
Publisher
ASME
Copyright
Locked until 11.4.2022 due to copyright restrictions. Copyright © 2021 by ASME

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit