Languages of higher-dimensional automata
Journal article, Peer reviewed
Accepted version

View/ Open
Date
2021Metadata
Show full item recordCollections
Original version
Mathematical Structures in Computer Science. 2021, 31 (5), 575-613. 10.1017/S0960129521000293Abstract
We introduce languages of higher-dimensional automata (HDAs) and develop some of their properties. To this end, we define a new category of precubical sets, uniquely naturally isomorphic to the standard one, and introduce a notion of event consistency. HDAs are then finite, labeled, event-consistent precubical sets with distinguished subsets of initial and accepting cells. Their languages are sets of interval orders closed under subsumption; as a major technical step, we expose a bijection between interval orders and a subclass of HDAs. We show that any finite subsumption-closed set of interval orders is the language of an HDA, that languages of HDAs are closed under binary unions and parallel composition, and that bisimilarity implies language equivalence.