Show simple item record

dc.contributor.authorBrevig, Ole Fredrik
dc.contributor.authorPerfekt, Karl-Mikael
dc.date.accessioned2022-03-02T09:24:14Z
dc.date.available2022-03-02T09:24:14Z
dc.date.created2021-12-16T15:12:25Z
dc.date.issued2022
dc.identifier.issn0022-1236
dc.identifier.urihttps://hdl.handle.net/11250/2982342
dc.description.abstractLet denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators on which are generated by symbols of the form , in the case that . If only a subset of prime numbers features in the Dirichlet series of φ, then the operator admits an associated orthogonal decomposition. Under sparseness assumptions on we use this to asymptotically estimate the approximation numbers of . Furthermore, in the case that φ is supported on a single prime number, we affirmatively settle the problem of describing the compactness of in terms of the ordinary Nevanlinna counting function. We give detailed applications of our results to affine symbols and to angle maps.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOrthogonal decomposition of composition operators on the $H^2$ space of Dirichlet seriesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume282en_US
dc.source.journalJournal of Functional Analysisen_US
dc.source.issue5en_US
dc.identifier.doi10.1016/j.jfa.2021.109353
dc.identifier.cristin1969533
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal