Show simple item record

dc.contributor.authorTietgen, Lukas
dc.contributor.authorHagen, Ingerid Julie
dc.contributor.authorKleven, Oddmund
dc.contributor.authorDi Bernardi, Cecilia
dc.contributor.authorKvalnes, Thomas
dc.contributor.authorNorén, Karin
dc.contributor.authorHasselgren, Malin
dc.contributor.authorWallen, Johan Fredrik
dc.contributor.authorAngerbjörn, Anders
dc.contributor.authorLanda, Arild
dc.contributor.authorEide, Nina Elisabeth
dc.contributor.authorFlagstad, Øystein
dc.contributor.authorJensen, Henrik
dc.date.accessioned2022-02-09T12:18:17Z
dc.date.available2022-02-09T12:18:17Z
dc.date.created2021-09-29T13:45:52Z
dc.date.issued2021
dc.identifier.citationProceedings of the Royal Society of London. Biological Sciences. 2021, 288 .en_US
dc.identifier.issn0962-8452
dc.identifier.urihttps://hdl.handle.net/11250/2977989
dc.description.abstractGenome-wide association studies provide good opportunities for studying the genetic basis of adaptive traits in wild populations. Yet, previous studies often failed to identify major effect genes. In this study, we used high-density single nucleotide polymorphism and individual fitness data from a wild non-model species. Using a whole-genome approach, we identified the MC1R gene as the sole causal gene underlying Arctic fox Vulpes lagopus fur colour. Further, we showed the adaptive importance of fur colour genotypes through measures of fitness that link ecological and evolutionary processes. We found a tendency for blue foxes that are heterozygous at the fur colour locus to have higher fitness than homozygous white foxes. The effect of genotype on fitness was independent of winter duration but varied with prey availability, with the strongest effect in years of increasing rodent populations. MC1R is located in a genomic region with high gene density, and we discuss the potential for indirect selection through linkage and pleiotropy. Our study shows that whole-genome analyses can be successfully applied to wild species and identify major effect genes underlying adaptive traits. Furthermore, we show how this approach can be used to identify knowledge gaps in our understanding of interactions between ecology and evolution.en_US
dc.language.isoengen_US
dc.publisherThe Royal Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFur colour in the Arctic fox: genetic architecture and consequences for fitnessen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber10en_US
dc.source.volume288en_US
dc.source.journalProceedings of the Royal Society of London. Biological Sciencesen_US
dc.identifier.doi10.1098/rspb.2021.1452
dc.identifier.cristin1940592
dc.relation.projectNorges forskningsråd: 223257en_US
dc.relation.projectNorges forskningsråd: 244557en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal