Vis enkel innførsel

dc.contributor.authorQuiles-Jiménez, Ana M T
dc.contributor.authorGregersen, Ida
dc.contributor.authorSegers, Filip
dc.contributor.authorSkarpengland, Tonje
dc.contributor.authorKroustallaki, Pinelopi
dc.contributor.authorYang, Kuan
dc.contributor.authorKong, Xiang Yi
dc.contributor.authorLauritzen, Knut Husø
dc.contributor.authorOlsen, Maria Belland
dc.contributor.authorKarlsen, Tom Rune
dc.contributor.authorNyman, Tuula Anneli
dc.contributor.authorSagen, Ellen Lund
dc.contributor.authorBjerkeli, Vigdis
dc.contributor.authorSuganthan, Rajikala
dc.contributor.authorNygård, Ståle
dc.contributor.authorScheffler, Katja
dc.contributor.authorPrins, Jurriën
dc.contributor.authorVan der Veer, Eric
dc.contributor.authorØgaard, Jonas
dc.contributor.authorFløisand, Yngvar
dc.contributor.authorJørgensen, Helle F.
dc.contributor.authorHolven, Kirsten Bjørklund
dc.contributor.authorBiessen, Erik A.L.
dc.contributor.authorNilsen, Hilde
dc.contributor.authorDahl, Tuva Børresdatter
dc.contributor.authorHolm, Sverre
dc.contributor.authorBennett, Martin R.
dc.contributor.authorAukrust, Pål
dc.contributor.authorBjørås, Magnar
dc.contributor.authorHalvorsen, Bente
dc.date.accessioned2022-02-04T12:16:36Z
dc.date.available2022-02-04T12:16:36Z
dc.date.created2021-12-01T12:20:09Z
dc.date.issued2021
dc.identifier.citationAtherosclerosis. 2021, 324 123-132.en_US
dc.identifier.issn0021-9150
dc.identifier.urihttps://hdl.handle.net/11250/2977183
dc.description.abstractBackground and aims Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. Methods Chow diet-fed atherosclerosis-prone Apoe−/− mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. Results We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. Conclusions Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis developmenten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber123-132en_US
dc.source.volume324en_US
dc.source.journalAtherosclerosisen_US
dc.identifier.doi10.1016/j.atherosclerosis.2021.02.023
dc.identifier.cristin1962567
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal