• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lateral undulation of snake robots: A simplified model and fundamental properties

Liljebäck, Pål; Pettersen, Kristin Ytterstad; Stavdahl, Øyvind; Gravdahl, Jan Tommy
Journal article, Peer reviewed
Thumbnail
View/Open
Robotica+2013+-+Lateral+undulation+of+snake+robots+-+A+simplified+model+and+fundamental+properties.pdf (4.864Mb)
URI
http://hdl.handle.net/11250/283815
Date
2013
Metadata
Show full item record
Collections
  • Institutt for teknisk kybernetikk [2193]
  • Publikasjoner fra CRIStin - NTNU [19946]
Original version
Robotica (Cambridge. Print) 2013, 31(7):1005-1036   10.1017/S0263574713000295
Abstract
This paper considers the lateral undulation motion of snake robots. The first contribution of the paper is a model of lateral undulation dynamics developed for control design and stability analysis purposes. The second contribution is an analysis of the simplified model that shows that any asymptotically stabilizing control law for the snake robot to an equilibrium point must be time varying. Furthermore, the analysis shows that a snake robot (with four links) is strongly accessible from almost any equilibrium point, except for certain singular configurations, and that the robot does not satisfy sufficient conditions for small-time local controllability. The third contribution is based on using averaging theory to prove that the average velocity of the robot during lateral undulation will converge exponentially fast to a steady-state velocity which is given analytically as a function of the gait pattern parameters. From the averaging analysis, we also derive a set of fundamental relationships between the gait parameters of lateral undulation and the resulting forward velocity of the snake robot. The paper presents simulation results and results from experiments with a physical snake robot that support the theoretical findings.
Description
This is the authors accepted and refereed manuscript to the article.
Publisher
Cambridge University Press
Journal
Robotica

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit