Rapid change of particle velocity due to volatile gas release during biomass devolatilization
Peer reviewed, Journal article
Published version

View/ Open
Date
2021Metadata
Show full item recordCollections
Abstract
Our earlier study showed significant differences in average particle velocity between simulation and experimental results for devolatilizing biomass particles in an idealised entrained flow reactor [N. Guo et al., Fuel, 2020]. This indicates that the simulations do not accurately describe the physicochemical transformations and fluid dynamic processes during devolatilization. This article investigates the reasons for these discrepancies using time-resolved analyses of the experimental data and complementary modelling work. The experiments were conducted in a downdraft drop-tube furnace with optical access, which uses a fuel-rich flat flame (CH4single bondO2single bondCO2) to heat the particles. Gas flow was characterized using particle image velocimetry, equilibrium calculations and thermocouple measurements. High-speed images of devolatilizing Norway spruce (Picea Abies) particles were captured and analysed using time-resolved particle tracking velocimetry methods. The data were used to estimate the balance of forces and fuel conversion. Thrust and “rocket-like” motions were frequently observed, followed by quick entrainment in the gas flow. Rocketing particles were, on average, smaller, more spherical and converted faster than their non-rocketing counterparts. These differences in conversion behaviour could be captured by a particle-size dependent, 0-D devolatilization model, corrected for non-isothermal effects. The results from this investigation can provide a basis for future modelling and simulation work relevant for pulverized firing technologies.