Vis enkel innførsel

dc.contributor.authorYu, Haoshui
dc.contributor.authorGundersen, Truls
dc.contributor.authorGencer, Emre
dc.date.accessioned2021-11-04T12:49:38Z
dc.date.available2021-11-04T12:49:38Z
dc.date.created2021-02-15T20:41:58Z
dc.date.issued2021
dc.identifier.citationEnergy Conversion and Management. 2021, 228 .en_US
dc.identifier.issn0196-8904
dc.identifier.urihttps://hdl.handle.net/11250/2827908
dc.description.abstractOxy-combustion power cycles are an alternative technology for electricity generation to facilitate carbon capture and storage (CCS). Among oxy-combustion power cycles, the Allam cycle is one of the most promising technologies for power generation in terms of both efficiency and economics. Besides, the Allam cycle can also achieve a near-zero emission target at a much lower cost compared to conventional fossil fuel power plants. On the other hand, the flue gas carbon capture process and the recycled flue gas compression process in the Allam cycle consume considerable work. If the compression work can be decreased, the energy efficiency of the system can be further improved, which can enhance the competitiveness over other power generation technologies. When the fuel of the power plant is Liquified Natural Gas (LNG) instead of conventional natural gas, the LNG cold energy can be utilized to reduce the compression work of the carbon capture process and recycled flue gas compression work in the Allam cycle. In this study, we investigated different ways to utilize the LNG cold energy for both a stand-alone power plant and a cogeneration system with power generation and LNG regasification. A superstructure incorporating many possible flowsheets is proposed in this study. A simulation-based optimization framework is adopted to optimize the superstructure. The results indicate that direct integration of LNG regasification and flue gas liquefaction performs well for the stand-alone power plant, while the organic Rankine cycle integration scheme is the best choice for the cogeneration system.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleOptimal liquified natural gas (LNG) cold energy utilization in an Allam cycle power plant with carbon capture and storageen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors' accepted manuscript to an article published by Elsevier. Locked until 9.12.2022 due to copyright restrictions. The AAM is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber11en_US
dc.source.volume228en_US
dc.source.journalEnergy Conversion and Managementen_US
dc.identifier.doi10.1016/j.enconman.2020.113725
dc.identifier.cristin1890133
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal