Vis enkel innførsel

dc.contributor.authorZhuo, Yizhi
dc.contributor.authorXia, Zhijie
dc.contributor.authorQi, Yuan
dc.contributor.authorSumigawa, Takashi
dc.contributor.authorWu, Jianyang
dc.contributor.authorSestak, Petr
dc.contributor.authorLu, Yinan
dc.contributor.authorHåkonsen, Verner
dc.contributor.authorLi, Tong
dc.contributor.authorWang, Feng
dc.contributor.authorChen, Wei
dc.contributor.authorXiao, Senbo
dc.contributor.authorLong, Rong
dc.contributor.authorKitamura, Takayuki
dc.contributor.authorLi, Liangbin
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2021-10-20T07:59:20Z
dc.date.available2021-10-20T07:59:20Z
dc.date.created2021-03-22T13:14:16Z
dc.date.issued2021
dc.identifier.citationAdvanced Materials. 2021, 33 (23), .en_US
dc.identifier.issn0935-9648
dc.identifier.urihttps://hdl.handle.net/11250/2824001
dc.description.abstractCurrent synthetic elastomers suffer from the well-known trade-off between toughness and stiffness. By a combination of multi-scale experiments and atomistic simulations, we demonstrate a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness. The designed elastomer comprises homogeneous networks with ultra-strong, reversible, and sacrificial octuple hydrogen bonds which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture. Strong hydrogen bonds and corresponding nanodomains enhance the stiffness by restricting the network mobility, and at the same time improve the toughness by dissipating energy during the transformation between different configurations. In addition, the stiffness mismatch between hard hydrogen bonding domains and the soft polydimethylsiloxane-rich phase promotes the crack deflection and branching, which can further dissipate energy and alleviate local stress. These cooperative mechanisms endow the elastomer with both high fracture toughness (17016 J/m2) and high Young’s modulus (14.7 MPa), circumventing the trade-off between toughness and stiffness. This work is expected to impact many fields of engineering requiring elastomers with unprecedented mechanical performance.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adma.202008523
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleSimultaneously toughening and stiffening elastomers with octuple hydrogen bondingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber9en_US
dc.source.volume33en_US
dc.source.journalAdvanced Materialsen_US
dc.source.issue23en_US
dc.identifier.doi10.1002/adma.202008523
dc.identifier.cristin1899896
dc.relation.projectNorges forskningsråd: 255507en_US
dc.relation.projectNorges forskningsråd: 245963en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal