Vis enkel innførsel

dc.contributor.authorSadanandan Anand, Akhil
dc.contributor.authorSeel, Katrine
dc.contributor.authorGjærum, Vilde Benoni
dc.contributor.authorHåkansson, Anne
dc.contributor.authorRobinson, Haakon
dc.contributor.authorSaad, Aya
dc.date.accessioned2021-10-14T08:36:42Z
dc.date.available2021-10-14T08:36:42Z
dc.date.created2021-09-21T10:42:29Z
dc.date.issued2021
dc.identifier.citationProcedia Computer Science. 2021, 192, 3987-3997.en_US
dc.identifier.issn1877-0509
dc.identifier.urihttps://hdl.handle.net/11250/2811583
dc.description.abstractReal-world autonomous systems are often controlled using conventional model-based control methods. But if accurate models of a system are not available, these methods may be unsuitable. For many safety-critical systems, such as robotic systems, a model of the system and a control strategy may be learned using data. When applying learning to safety-critical systems, guaranteeing safety during learning as well as testing/deployment is paramount. A variety of different approaches for ensuring safety exists, but the published works are cluttered and there are few reviews that compare the latest approaches. This paper reviews two promising approaches on guaranteeing safety for learning-based robust control of uncertain dynamical systems, which are based on control barrier functions and control Lyapunov functions. While control barrier functions provide an option to incorporate safety in terms of constraint satisfaction, control Lyapunov functions are used to define safety in terms of stability. This review categorises learning-based methods that use control barrier functions and control Lyapunov functions into three groups, namely reinforcement learning, online and offline supervised learning. Finally, the paper presents a discussion of the suitability of the different methods for different applications.en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectRobust AIen_US
dc.subjectRobust AIen_US
dc.subjectControl Lyapunov Functionsen_US
dc.subjectControl Lyapunov Functionsen_US
dc.subjectControl Barrier Functionsen_US
dc.subjectControl Barrier Functionsen_US
dc.subjectSafe learningen_US
dc.subjectSafe learningen_US
dc.titleSafe Learning for Control using Control Lyapunov Functions and Control Barrier Functions: A Reviewen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.subject.nsiVDP::Information and communication technology: 550en_US
dc.source.pagenumber3987-3997en_US
dc.source.volume192en_US
dc.source.journalProcedia Computer Scienceen_US
dc.identifier.doi10.1016/j.procs.2021.09.173
dc.identifier.cristin1936452
dc.relation.projectNorges forskningsråd: 295920en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal