Vis enkel innførsel

dc.contributor.authorPakozdi, Csaba
dc.contributor.authorWang, Weizhi
dc.contributor.authorKamath, Arun
dc.contributor.authorBihs, Hans
dc.date.accessioned2021-10-07T09:22:18Z
dc.date.available2021-10-07T09:22:18Z
dc.date.created2021-09-30T10:42:09Z
dc.date.issued2021
dc.identifier.citationOcean Engineering. 2021, 239, .en_US
dc.identifier.issn0029-8018
dc.identifier.urihttps://hdl.handle.net/11250/2788334
dc.description.abstractNumerical wave models that solve the Laplace equation for the velocity potential with a -grid in the vertical direction have been proven to be flexible and efficient. However, it is observed that the dispersion relation is sensitive to the variation of the vertical -grid arrangements. So far, there is no recommended practice to optimise the vertical -grid for a correct representation of the dispersion relation. In order to reduce the uncertainty of the dispersion relation and optimise the choice of the vertical grid distribution, a new method based on the constant truncation error of the finite difference scheme is presented in this article. The optimised vertical grids estimated by the novel method are applied in the fully nonlinear potential flow model REEF3D::FNPF to provide simulated wave surface elevations, which are compared with the measured time series in the long wave flume at SINTEF Ocean, Trondheim. Several different wave scenarios are considered, including regular waves, bichromatic waves, trichromatic waves as well as irregular waves. The wavemaker motions in the physical flume are used to generate waves in the numerical wave tank of REEF3D::FNPF. The proposed truncation error method is seen to effectively mitigate the dispersion (phase) error in all scenarios and the simulations show high accuracy in comparison with the experimental data.en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectHavbølgeren_US
dc.subjectOcean wavesen_US
dc.titleReduction of the wave propagation error of a sigma grid based numerical tank using a vertical spacing based on the constant truncation erroren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.subject.nsiVDP::Marin teknologi: 580en_US
dc.subject.nsiVDP::Marine technology: 580en_US
dc.source.pagenumber18en_US
dc.source.volume239en_US
dc.source.journalOcean Engineeringen_US
dc.identifier.doi10.1016/j.oceaneng.2021.109741
dc.identifier.cristin1941181
dc.relation.projectEU/HPRI-CT-2001-00176en_US
dc.relation.projectNotur/NorStore: NN2620Ken_US
dc.relation.projectNorges forskningsråd: 267981en_US
dc.description.localcodeThis is the authors' accepted manuscript to an article published by Elsevier. Locked until 9 September 2023 due to copyright restrictions. The AAM is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.articlenumber109741en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal