Vis enkel innførsel

dc.contributor.advisorErtesvåg, Ivar Ståle
dc.contributor.advisorGuo, Ning
dc.contributor.authorLorentzen, Simon Johan
dc.date.accessioned2021-10-05T17:38:45Z
dc.date.available2021-10-05T17:38:45Z
dc.date.issued2021
dc.identifierno.ntnu:inspera:80323884:22277156
dc.identifier.urihttps://hdl.handle.net/11250/2787908
dc.description.abstractI dette prosjektet har tre forskjellige modeller for flammer blitt undersøkt: forblandet velblandet reaktor, forblandet fritt-spredene flamme, og ikke-forblandet motstrøms flamme. Målet med prosjekter var å først bestemme en måte å beregne entropiproduskjoenen i flammer, samt hvordan den fordeleres seg i rom, og deretter utføre en slik analyse på modellene nevnt over, med metan og syntese gass (syngas) som brensel. For hvert brensel ble det brukt detaljert, redusert, og globale mekanismer. GRI-mech 3.0 [41] ble brukt som den detaljerte mekanismen for begge brenslene, mens DRM19 [24] og Davis et al. [15] var de reduserte mekanismene brukt for metan og syngas, respektivt. For metan ble det bruke en global mekanisme med en reaksjon, laget av Westbrook og Dryer [47]. I midlertid ble det brukt to globale mekanismer for syngas. For den vel-blandete reaktoren, og motstrøms flammen ble en global mekanisme presentert av Cuoci [11] brukt. En annen mekanisme presenter av Marzouk og Huckaby [32] ble brukt for den fritt-spredene flammen. I tillegg til variasjon av forenkling i den kjemiske mekanismen var trykket variert mellom 1 atm, 10 atm og 20 atm. Dette resulterte i totalt 54 forskjellige tilfeller som skulle simuleres. Entropi produksjonen ble beregnet i en post-prosess analyse i en separat kode for den frittutvidende flammen og motstrøms flammen, mens den var inkludert i koden for den vel-blanda reaktoren. For å validere koden ble entropi produksjonen beregnet for metan ved bruk av den detaljerte og redusert mekanismen, sammenlignet med Nishida et al. [35]. Dermed ble kodene for, den fritt-spredene flammen, entropi produksjonen, samt bruken av GRI-mech 3.0 [41] og DRM19 [24] for metan validert. Videre ble koden for motstrømsflammen, samt bruken av GRImech 3.0 [41] og Davis et al. [15] for syngas, validert mot Som et al. [42]. Den vel-blandete reaktoren var antatt å være såpass enkel at en omgående validering ikke var nødvendig. Den var derfor kun sammenlignet med manuelle beregninger. To større hindre, blant flere små, ble møtt i prosjekt. Den ene var at Cantera [16] ikke gir ut flerkomponent diffusjons koeffisientene, nødvendig for entropi produksjon fra diffusjon, i hvert punkt i løsningen. Derfor ble i stedet stoffenes molare diffusjon hentet ut i hvert punkt og brukt i utregningene. Den andre var entropi produksjon fra intern varmeoverføring fra reaksjonene til luft-brensel blandingen måtte tas med for reaktoren, i tillegg til produksjonen fra reaksjonene som først var antatt å være den eneste kilden. Når hindrene var overkomne ble flammene simulert, og entropi produksjonen og dens distribusjon i rommet ble beregnet. Fra resultatene ble det oppdaget at både for den vel-blandete reaktoren og den fritt-spredene flammen, økte den integrerte entropi produksjonen med trykket for begge brenselene, ved bruk av alle mekanismene. I motsetning sank produksjonen for begge brenselene, ved bruk av alle mekanismer i motstrøms flammen. Grafene som viste den lokale produksjonen ble høyere og smalere for begge stoffene, og alle mekanismene i den fritt-spredene flammen. Profilen for den lokale produksjonen i motstrøms flammen var mindre avhengig av trykket. Videre ble det oppdaget at den redusert mekanismen for metan fungerte bra for å beregne den integrerte og den lokale produksjonen for den fritt-spredene flammen, men hadde noen avvik for motstrøms flammen. Den reduserte mekanismen for syngas fungerte bra i begge modellene. Den globale mekanismen for methan fungerte bra for å beregne den integrerte produksjonen i alle modellene. Den hadde noe avvik ved 1 atm for den fritt-spredene flammen, og ved 10 atm og 20 atm for motstrøms flammen. Den globale mekanismen brukt for syngas i den fritt-spredene flammen fungerte ikke bra. Den globale mekanismen brukt i de andre modellene fungerte derimot overraskende bra.
dc.description.abstractIn this project, three different flame models have been investigated, namely premixed wellstirred reactor, premixed freely-propagating flame, and non-premixed counterflow flame. The objective of the project was to figure out a way to analyse the entropy production in flames, and how it is distributed in space, and thereafter perform such an analysis on the flame models mentioned. In the analyses, methane and syngas were used as fuels. For each fuel it was used one detailed, one reduced and one global mechanism. GRI-mech 3.0 [41] was used as the detailed mechanism for both fuels, while DRM19 [24] and [15] was used as the reduced mechanisms for methane and syngas, respectively. For methane, a global mechanism consisting of one equation created by Westbrook and Dryer [47] was used. Meanwhile, for syngas two global mechanisms were used. For the well-stirred reactor, and the non-premixed counterflow flame, a global mechanism presented by Cuoci et al. [11] was used. Another global mechanism presented by Marzouk and Huckaby [32] was used for the last model. In addition to varying the chemical mechanism, in degree of simplification, the pressure was varied between 1 atm, 10 atm, and 20 atm. This resulted in a total of 54 individual cases to be simulated. The entropy production was estimated in a post-process analysis in a separate code for the freely-propagating and counterflow flames, while it was included in the code for the wellstirred reactor. To validate the codes, the entropy production estimated for methane using both the detailed, and reduced mechanisms were compared with results obtained by Nishida et al. [35]. Thus, the code for the freely-propagating flame, the use of GRI-mech [41] and DRM19 [24] for methane, as well as the post-process analysis code were validated. The code written for the counterflow flame, as well as the use of GRI-mech [41] and Davis et al. [15] for syngas, were validated against Som et al. [42]. The well-stirred reactor was considered to be of such simplicity that an extensive validation was unnecessary. The values obtained for entropy was however crosschecked with manually. This was also done for the freely-propagating flame. Two larger obstacles, amongst more less time-demanding obstacles, were met during the project. Firstly, the multi-component diffusion coefficient necessary for the calculation of entropy production due to mass diffusion was not given by Cantera [16]. Therefore, the species mole fluxes were retrieved rather than the coefficients. Secondly, it was discovered that the entropy change in the reactor was not caused by the chemical reactions alone, as initially thought. The entropy production due to internal heat transfer from the reactions to the fuel-air mixture also had to be accounted for. With all obstacles sorted, the flames were simulated, and the entropy production, with its distribution in space was estimated. It was discovered that both in the well-stirred reactor model, and the freely-propagating flame model the integrated entropy production increased with pressure for both fuels, with all mechanisms. In contrast, the production decreased for both fuels, with all mechanisms in the counterflow model. The profiles of the local entropy production got thinner and taller for both fuels in the freely-propagating flame. The counterflow model was less pressure dependent. Furthermore, the reduced mechanism for methane worked well for the integrated entropy production and the local production in the freely-propagating flame, but had some discrepancies in the counterflow flame. The reduced mechanism for syngas worked well in both models. The global mechanism for methane worked well to calculate the integrated production in both models, but had discrepancies for the local production at 1 atm for the freely-propagating flame, and at 10 atm, and 20 atm for the counterflow model. The global mechanism used for syngas in the freely-propagating model did not work, and was not appropriate to use. The global mechanism used in the reactor and counterflow flame models worked well.
dc.languageeng
dc.publisherNTNU
dc.titleUnderstanding Energy Conversion in Combustion
dc.typeMaster thesis


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel