Vis enkel innførsel

dc.contributor.authorSun, Xuejian
dc.contributor.authorSong, Pengyun
dc.contributor.authorHu, Xiangping
dc.contributor.authorMao, Wenyuan
dc.contributor.authorDeng, Qiangguo
dc.contributor.authorXu, Hengjie
dc.date.accessioned2021-09-23T06:51:00Z
dc.date.available2021-09-23T06:51:00Z
dc.date.created2021-01-13T21:48:46Z
dc.date.issued2021
dc.identifier.citationJournal of Applied Fluid Mechanics. 2021, 14 (4), 979-991.en_US
dc.identifier.issn1735-3572
dc.identifier.urihttps://hdl.handle.net/11250/2780620
dc.description.abstractThe dry gas seal (DGS) is a non-contacting, gas-lubricated mechanical face seal commonly used in rotating machinery. Traditional analyses of DGSs treat the end face as an independent factor by setting the end-face inlet as boundary conditions, but limited attention is focused on the sealing chamber of the DGS. Using the finite volume method and the shear stress transport (SST) k-ω model, the coupling between the millimeterscale sealing chamber and the micrometer-scale end face are simulated with regard to the real gas effect of CO2. The three-dimensional distributions of velocity, pressure and temperature in the cross-scale flow field are investigated under different working conditions. Moreover, the boundary parameters of the end-face inlet are modified by response surface methodology with a central composite rotatable design. The results demonstrate that the real gas effect of CO2 leads to an increased total inlet flow. When the pressure reaches 10.3 MPa, the relative difference is 51.90% compared to ideal gas. Minor temperature and pressure changes occur in the sealing chamber when the dry gas seal is in operation. However, the inlet temperature of the end face Tf increases and the inlet pressure of the end face pf decreases. These research results provide a reliable reference for engineering practice.en_US
dc.language.isoengen_US
dc.publisherIsfahan University of Technologyen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleCross-Scale Flow Field Analysis of Sealing Chamber and End Face Considering the CO2 Real Gas Effecten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber979-991en_US
dc.source.volume14en_US
dc.source.journalJournal of Applied Fluid Mechanicsen_US
dc.source.issue4en_US
dc.identifier.doi10.47176/jafm.14.04.32038
dc.identifier.cristin1870961
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal