Vis enkel innførsel

dc.contributor.authorMoltumyr, Andreas Hanssen
dc.contributor.authorRagazzon, Michael Remo Palmén
dc.contributor.authorGravdahl, Jan Tommy
dc.date.accessioned2021-09-10T07:00:43Z
dc.date.available2021-09-10T07:00:43Z
dc.date.created2021-01-11T15:35:25Z
dc.date.issued2020
dc.identifier.issn2405-8963
dc.identifier.urihttps://hdl.handle.net/11250/2775098
dc.description.abstractThe adoption of fractional calculus in control systems has enabled the synthesis of new controllers with fractional-order derivatives and integrals. Several optimization-based methods for tuning of linear fractional-order controllers have been explored. However, few have considered the stability of the closed-loop system during optimization. This paper presents a model-driven method for tuning of fractional-order controllers based on a heuristic optimization technique and the experimental use of Nyquist’s stability criterion to enforce closed-loop stability of fractional-order systems. The proposed frequency domain tuning method enables tuning of linear fractional-order controllers with few to medium number of parameters. The method can handle both fractional-order linear and integer-order linear plant models and controllers. To assist the experimental use of Nyquist’s stability criterion, a function for drawing a Logarithmic amplitude polar diagram has been developed. Simulation results of the method applied to a nanopositioning system in atomic force microscopy suggest that the proposed method can be used for optimization of fractional-order controllers while enforcing closed-loop stability. Given that the system can be stabilized with the given controller. Matlab code building on the FOTF toolbox and global optimization toolbox is provided.en_US
dc.language.isoengen_US
dc.publisherInternational Federation of Automatic Control (IFAC)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleFractional-order Control: Nyquist Constrained Optimizationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.journalIFAC-PapersOnLineen_US
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2020.12.519
dc.identifier.cristin1869214
dc.relation.projectNorges forskningsråd: 237900en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal