Vis enkel innførsel

dc.contributor.authorBacke, Stian
dc.contributor.authorAhang, Mohammadreza
dc.contributor.authorTomasgard, Asgeir
dc.date.accessioned2021-08-30T08:58:53Z
dc.date.available2021-08-30T08:58:53Z
dc.date.created2021-08-24T14:29:51Z
dc.date.issued2021
dc.identifier.citationApplied Energy, 2021, 302, .en_US
dc.identifier.issn0306-2619
dc.identifier.urihttps://hdl.handle.net/11250/2771704
dc.description.abstractThis paper examines the importance of including operational scenarios representing short-term stochasticity in the long-term capacity expansion models with high shares of variable renewables. As scenario generation routines often are probabilistic, for example based on sampling, it is crucial that they ensure stable results in the capacity expansion model, so that it is the underlying uncertainty that decides the optimal solution, and not the approximation of that uncertainty in the model. However, it is unclear which operational scenario properties that are important to ensure good results and stability in stochastic models. This paper evaluates three sampling-based scenario generation routines in a multi-horizon stochastic capacity expansion problem representing the European electricity system. We compare the use of stochastic versus deterministic modelling with high shares of variable renewables. Further, we perform in-sample and out-of-sample stability tests on 90 scenario trees for each routine, and we compare the routines’ ability to produce stable system costs and capacity investments when approximating the optimal value from the real distribution. Results show that stochastic modelling with more than 80% share of variable renewables leads to more investments in both dispatchable and variable renewable capacity compared to deterministic modelling, which means that stochastic modelling should be used with very high shares of variable renewables. The scenario generation routine based on stratified sampling increases stability with the same number of operational scenarios compared to its alternatives, and scenario generation routines using stratified sampling should be further explored.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2021.117538
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleStable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation samplingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume302en_US
dc.source.journalApplied Energyen_US
dc.identifier.doi10.1016/j.apenergy.2021.117538
dc.identifier.cristin1928371
dc.relation.projectNorges forskningsråd: 257660en_US
dc.relation.projectEC/H2020/824260en_US
dc.relation.projectNorges forskningsråd: 268097en_US
dc.description.localcodeThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.source.articlenumber117538en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal