Vis enkel innførsel

dc.contributor.authorAlves, Erick Fernando
dc.contributor.authorMota, Daniel dos Santos
dc.contributor.authorTedeschi, Elisabetta
dc.date.accessioned2021-07-13T07:48:44Z
dc.date.available2021-07-13T07:48:44Z
dc.date.created2021-07-02T15:41:43Z
dc.date.issued2021
dc.identifier.citationFrontiers in Energy Research. 2021, 9, .en_US
dc.identifier.issn2296-598X
dc.identifier.urihttps://hdl.handle.net/11250/2764227
dc.description.abstractThe exponential rise of renewable energy sources and microgrids brings about the challenge of guaranteeing frequency stability in low-inertia grids through the use of energy storage systems. This paper reviews the frequency response of an ac power system, highlighting its different time scales and control actions. Moreover, it pinpoints main distinctions among high-inertia interconnected systems relying on synchronous machines and low-inertia systems with high penetration of converter-interfaced generation. Grounded on these concepts and with a set of assumptions, it derives algebraic equations to rate an energy storage system providing inertial and primary control. The equations are independent of the energy storage technology, robust to system nonlinearities, and rely on parameters that are typically defined by system operators, industry standards, or network codes. Using these results, the authors provide a step-by-step procedure to size the main components of a converter-interfaced hybrid energy storage system. Finally, a case study of a wind-powered oil and gas platform in the North Sea demonstrates with numerical examples how the proposed methodology 1) can be applied in a practical problem and 2) allows the system designer to take advantage of different technologies and set specific requirements for each storage device and converter according to the type of frequency control provided.en_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.urihttps://zenodo.org/record/4601067
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectEnergilagringen_US
dc.subjectEnergy storageen_US
dc.subject22/5000 Kraftsystemet balanseringen_US
dc.subjectPower system balancingen_US
dc.subjectStabilitetsanalyseren_US
dc.subjectPower system stabilityen_US
dc.titleSizing of Hybrid Energy Storage Systems for Inertial and Primary Frequency Controlen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Elkraft: 542en_US
dc.subject.nsiVDP::Electrical power engineering: 542en_US
dc.source.volume9en_US
dc.source.journalFrontiers in Energy Researchen_US
dc.source.issue649200en_US
dc.identifier.doi10.3389/fenrg.2021.649200
dc.identifier.cristin1920139
dc.relation.projectNorges forskningsråd: 281986en_US
dc.relation.projectNorges forskningsråd: 296207en_US
dc.description.localcodeCopyright © 2021 Alves, Mota and Tedeschi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_US
dc.source.articlenumber649200en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal