Vis enkel innførsel

dc.contributor.authorLuo, Sihai
dc.contributor.authorMancini, Andrea
dc.contributor.authorBerte, Rodrigo
dc.contributor.authorHoff, Bård Helge
dc.contributor.authorMaier, Stefan
dc.contributor.authorDe Mello, John Christian
dc.date.accessioned2021-06-01T09:17:31Z
dc.date.available2021-06-01T09:17:31Z
dc.date.created2021-05-31T12:35:50Z
dc.date.issued2021
dc.identifier.citationAdvanced Materials. 2021, 33 (20), .en_US
dc.identifier.issn0935-9648
dc.identifier.urihttps://hdl.handle.net/11250/2757172
dc.description.abstractMetallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.en_US
dc.language.isoengen_US
dc.publisherWiley GmBHen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMassively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Levelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber10en_US
dc.source.volume33en_US
dc.source.journalAdvanced Materialsen_US
dc.source.issue20en_US
dc.identifier.doihttps://doi.org/10.1002/adma.202100491
dc.identifier.cristin1912807
dc.description.localcode© 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal