Vis enkel innførsel

dc.contributor.authorSong, Yang
dc.contributor.authorWang, Zhiwei
dc.contributor.authorLiu, Zhigang
dc.contributor.authorWang, Ruichen
dc.date.accessioned2021-04-16T11:14:51Z
dc.date.available2021-04-16T11:14:51Z
dc.date.created2020-12-09T10:50:37Z
dc.date.issued2021
dc.identifier.issn0888-3270
dc.identifier.urihttps://hdl.handle.net/11250/2738120
dc.description.abstractIn the high-speed railway industry, the pantograph-catenary system is responsible to provide continuous electric energy for the high-speed train. The pantograph-catenary system suffers multiple impacts from the complex work environment. The vehicle-track excitation is one of the normal disturbances to the pantograph-catenary interaction. Previous studies only consider the vertical effect of the vehicle-track vibration on the pantograph-catenary interaction. To address this deficiency, both of the pantograph-catenary and vehicle-track models are constructed in this paper. The validations of both models are verified by the experimental test and the world benchmark, respectively. The pantograph base follows the translations and rotations of the car-body caused by random rail irregularities. In combination with a spatial contact model between the contact wire and the pantograph strip, the spatial vibration of the carbody can be fully considered in the pantograph-catenary interaction. The statistical analysis, stochastic analysis and frequency analysis are performed to make sense of the effect of the random track irregularities on the pantograph-catenary interaction. The deviation of the contact point away from the strip centre caused by the carbody vibration is also analysed. The results show that the reliability of the pantograph-catenary system shows a continuous decrease in the degradation of rail quality. The carbody vibration may cause the de-wirement of the pantograph in extreme conditions. Finally, an application example is given to evaluate the dynamic performance of the pantograph-catenary system running on the China high-speed network with realistic rail irregularities.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleA spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.volume151en_US
dc.source.journalMechanical systems and signal processingen_US
dc.identifier.doi10.1016/j.ymssp.2020.107336
dc.identifier.cristin1857815
dc.description.localcode"© 2020. This is the authors’ accepted and refereed manuscript to the article. Locked until 24.11.2022 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ "en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal