• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials

Zhang, Will; Capilnasiu, Adela; Sommer, Gerhard; Holzapfel, Gerhard; Nordsletten, David A.
Peer reviewed, Journal article
Published version
Åpne
Zhang (Låst)
Permanent lenke
https://hdl.handle.net/11250/2736485
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for konstruksjonsteknikk [1656]
  • Publikasjoner fra CRIStin - NTNU [21889]
Originalversjon
Computer Methods in Applied Mechanics and Engineering. 2020, 362 1-33.   10.1016/j.cma.2020.112834
Sammendrag
While experimental evidence indicates that the mechanical response of most tissues is viscoelastic, current biomechanical models in the computational community often assume hyperelastic material models. Fractional viscoelastic constitutive models have been successfully used in literature to capture viscoelastic material response; however, the translation of these models into computational platforms remains limited. Many experimentally derived viscoelastic constitutive models are not suitable for three-dimensional simulations. Furthermore, the use of fractional derivatives can be computationally prohibitive, with a number of current numerical approximations having a computational cost that is and a storage cost that is ( denotes the number of time steps). In this paper, we present a novel numerical approximation to the Caputo derivative which exploits a recurrence relation similar to those used to discretize classic temporal derivatives, giving a computational cost that is and a storage cost that is fixed over time. The approximation is optimized for numerical applications, and an error estimate is presented to demonstrate the efficacy of the method. The method, integrated into a finite element solid mechanics framework, is shown to be unconditionally stable in the linear viscoelastic case. It was then integrated into a computational biomechanical framework, with several numerical examples verifying the accuracy and computational efficiency of the method, including in an analytic test, in an analytic fractional differential equation, as well as in a computational biomechanical model problem.
Utgiver
Elsevier
Tidsskrift
Computer Methods in Applied Mechanics and Engineering

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit