• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Sensing Technologies to Explain Children’s Self-Representation in Motion-Based Educational Games

Lee-Cultura, Serena; Sharma, Kshitij; Papavlasopoulou, Sofia; Retalis, Symeon; Giannakos, Michail
Chapter
Published version
View/Open
Lee-Cultura (Locked)
URI
https://hdl.handle.net/11250/2736375
Date
2020
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [3952]
  • Publikasjoner fra CRIStin - NTNU [21809]
Original version
https://doi.org/10.1145/3392063.3394419
Abstract
Motion-Based Touchless Games (MBTG) are being investigated as a promising interaction paradigm in children's learning experiences. Within these games, children's digital persona (i.e, avatar), enables them to efficiently communicate their motion-based interactivity. However, the role of children's Avatar Self-Representation (ASR) in educational MBTG is rather under-explored. We present an in-situ within subjects study where 46 children, aged 8--12, played three MBTG with different ASRs. Each avatar had varying visual similarity and movement congruity (synchronisation of movement in digital and physical spaces) to the child. We automatically and continuously monitored children's experiences using sensing technology (eye-trackers, facial video, wristband data, and Kinect skeleton data). This allowed us to understand how children experience the different ASRs, by providing insights into their affective and behavioural processes. The results showed that ASRs have an effect on children's stress, arousal, fatigue, movement, visual inspection (focus) and cognitive load. By exploring the relationship between children's degree of self-representation and their affective and behavioural states, our findings help shape the design of future educational MBTG for children, and emphasises the need for additional studies to investigate how ASRs impacts children's behavioural, interaction, cognitive and learning processes.
Publisher
Association for Computing Machinery (ACM)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit