Vis enkel innførsel

dc.contributor.advisorAlmaas, Eivind
dc.contributor.advisorWentzel, Alexander
dc.contributor.advisorSletta, Håvard
dc.contributor.authorSulheim, Snorre
dc.date.accessioned2021-03-18T14:36:55Z
dc.date.available2021-03-18T14:36:55Z
dc.date.issued2021
dc.identifier.isbn978-82-326-6517-4
dc.identifier.issn2703-8084
dc.identifier.urihttps://hdl.handle.net/11250/2734302
dc.description.abstractSummary: Metabolism is the set of all chemical reactions responsible for the conversion of nutrients into the energy and cellular building blocks required for growth and cellular maintenance in a living organism. Because of our detailed knowledge of enzymes and the chemical reactions they catalyze, one can create a rather accurate representation of an organism’s metabolic network from the sequenced and annotated genome. However, in contrast to classical textbook depictions of individual metabolic pathways, these metabolic networks are often highly interconnected and can contain thousands of different reactions and metabolites. Due to this complexity, computational and mathematical algorithms are often required to predict the phenotypic outcome of genetic modifications or changes in the nutrient environment. When a metabolic network is combined with a representation of growth, cellular maintenance requirements, and available nutrients, it is called a genome-scale metabolic model. In this work we assemble and apply genome-scale metabolic models to study two rather different organisms. The first organism, Streptomyces coelicolor, is a complex, soil-dwelling bacterium that is of great interest within drug discovery as a cell factory for production of novel biopharmaceuticals. Through two consecutive publications we merge and improve existing S. coelicolor models into a consensus model that is hosted in an open-source environment to encourage contributions from the Streptomyces research community. We then apply the developed model to explore and understand how one should proceed with strain development to create a mutant strain that is optimal for heterologous expression of biosynthetic gene clusters. Another contribution in this direction is our development of a computational pipeline that automatically reconstructs metabolic pathways encoded by biosynthetic gene clusters. The second organism, Prochlorococcus, is the most abundant phototrophic marine bacterium, and thus a major player in the marine food web and global carbon fixation. We use random sampling and dynamic flux balance analysis to understand how its metabolism is affected by the day-night cycle and varying nutrient conditions, with a particular focus on glycogen allocation and release of organic compounds that become nutrients for marine heterotrophs. Furthermore, this study required method development extending the software COMETS to account for the periodicity of available daylight and light absorption. Together, this work contributes to an increased understanding of S. coelicolor and Prochlorococcus, in addition to updated and improved genome-scale metabolic models which are by themselves valuable tools in further research of these bacteria. Additionally, we have developed generic tools of great value for a broader audience, both towards drug development and for future studies of photosynthetic microbes.en_US
dc.description.abstractSammendrag: Næringsstoffer omdannes til byggeklosser og energi i en bakterie (eller celle) ved hjelp av en mengde kjemiske reaksjoner som til sammen utgjør bakteriens metabolisme. De kjemiske reaksjonene katalyseres av enzymer, og metabolismen til hver enkelt art defineres av genene i bakteriens arvemateriale, og hvilke enzymer genene koder for. Med utgangspunkt i arvematerialet kan man derfor skissere opp modeller av hver arts spesifikke metabolisme som man kan bruke til f.eks. å forutsi hvordan en bakterie vil oppføre seg i et gitt vekstmiljø. I denne doktorgraden har jeg laget og anvendt metabolske modeller for å studere to ulike bakterier. Den første bakterien, Streptomyces coelicolor, tilhører en slekt som er opphavet til mange av antibiotikaene som brukes i dag. På grunn av den økende graden av antibiotikaresistente sykdomsfremkallende bakterier er det et akutt behov for å finne og produsere nye virkestoffer. Her kan S. coelicolor spille en viktig rolle ved å fungere som en mikrobiell fabrikk som kan uttrykke genmateriale overført fra andre bakterier som koder for produksjonen av nye virkestoffer. Ved å kombinere en metabolsk modell med eksperimentelle data har jeg undersøkt hvilke tiltak som kan optimalisere produksjon av nye virkestoffer i S. coelicolor. Jeg har brukt en lignende fremgangsmåte for å forstå hvordan ulike miljøer påvirker Prochlrococcus' evne til å lagre eller skille ut organisk materiale. Som den mest tallrike fotosyntetiske bakterien i havet er Prochlorococcus en hjørnestein i den marine næringskjeden, og det organiske materialet den produserer er viktige næringsstoffer for andre bakterier som ikke har evnen til å gjøre fotosyntese. Ved å simulere tusenvis av ulike næringsmiljøer har vi identifisert hvilke faktorer som har størst innvirkning på denne bakteriens metabolisme. Til sammen har dette arbeidet bidratt til utviklingen av kunnskap og modelleringsverktøy for to bakterier som er av stor interesse innenfor hvert sitt anvendelsesområde.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2021:96
dc.relation.haspartPaper 1: Bernstein, David; Sulheim, Snorre; Almaas, Eivind; Segrè, Daniel. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology 2021. https://doi.org/10.1186/s13059-021-02289-z This article is licensed under a Creative Commons Attribution 4.0 International License(CC BY 4.0)en_US
dc.relation.haspartPaper 2: Kumelj, Tjasa; Sulheim, Snorre; Wentzel, Alexander; Almaas, Eivind. Predicting strain engineering strategies using iKS1317: a genome-scale metabolic model of Streptomyces coelicolor. Biotechnology Journal 2019 https://doi.org/10.1002/biot.201800180. This is an open access article under the terms of the Creative Commons Attribution License (CC BY 4.0)en_US
dc.relation.haspartPaper 3: Sulheim, Snorre; Fossheim, Fredrik A.; Wentzel, Alexander; Almaas, Eivind. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics 2021. https://doi.org/10.1186/s12859-021-03985-0 This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)en_US
dc.relation.haspartPaper 4: Sulheim, Snorre; Kumelj, Tjasa; van Dissel, Dino; Salehzadeh-Yazdi, Ali; Du, Chao; Van Wezel, Gilles P.; Nieselt, Kay; Almaas, Eivind; Wentzel, Alexander; Kerkhoven, Eduard J. Enzyme-Constrained Models and Omics Analysis of Streptomyces coelicolor Reveal Metabolic Changes that Enhance Heterologous Production. iScience 2020 ;Volum 23.(9) https://doi.org/10.1016/j.isci.2020.101525 This is an open access article under the CC BY license.en_US
dc.relation.haspartPaper 5: Ofaim, Shany; Sulheim, Snorre; Almaas, Eivind; Sher, Daniel; Segrè, Daniel. Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Frontiers in Genetics 2021 This is an open-access https://doi.org/10.3389/fgene.2021.586293 article distributed under the terms of the Creative Commons Attribution License (CC BY).en_US
dc.titleAssembly and application of genome-scale metabolic models to study Streptomyces coelicolor and Prochlorococcusen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Technology: 500::Biotechnology: 590en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel