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Abstract

Metabolism is the set of all chemical reactions responsible for the conversion of
nutrients into the energy and cellular building blocks required for growth and cel-
lular maintenance in a living organism. Because of our detailed knowledge of
enzymes and the chemical reactions they catalyze, one can create a rather accurate
representation of an organism’s metabolic network from the sequenced and annot-
ated genome. However, in contrast to classical textbook depictions of individual
metabolic pathways, these metabolic networks are often highly interconnected and
can contain thousands of different reactions and metabolites. Due to this complex-
ity, computational and mathematical algorithms are often required to predict the
phenotypic outcome of genetic modifications or changes in the nutrient environ-
ment.

When a metabolic network is combined with a representation of growth, cel-
lular maintenance requirements, and available nutrients, it is called a genome-
scale metabolic model. In this work we assemble and apply genome-scale meta-
bolic models to study two rather different organisms. The first organism, Strep-
tomyces coelicolor, is a complex, soil-dwelling bacterium that is of great interest
within drug discovery as a cell factory for production of novel biopharmaceut-
icals. Through two consecutive publications we merge and improve existing S.
coelicolor models into a consensus model that is hosted in an open-source en-
vironment to encourage contributions from the Streptomyces research community.
We then apply the developed model to explore and understand how one should
proceed with strain development to create a mutant strain that is optimal for het-
erologous expression of biosynthetic gene clusters. Another contribution in this
direction is our development of a computational pipeline that automatically recon-
structs metabolic pathways encoded by biosynthetic gene clusters.
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The second organism, Prochlorococcus, is the most abundant phototrophic mar-
ine bacterium, and thus a major player in the marine food web and global carbon
fixation. We use random sampling and dynamic flux balance analysis to under-
stand how its metabolism is affected by the day-night cycle and varying nutrient
conditions, with a particular focus on glycogen allocation and release of organic
compounds that become nutrients for marine heterotrophs. Furthermore, this study
required method development extending the software COMETS to account for the
periodicity of available daylight and light absorption.

Together, this work contributes to an increased understanding of S. coelicolor and
Prochlorococcus, in addition to updated and improved genome-scale metabolic
models which are by themselves valuable tools in further research of these bac-
teria. Additionally, we have developed generic tools of great value for a broader
audience, both towards drug development and for future studies of photosynthetic
microbes.
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Chapter 1

Introduction

Life is distinguished by the ability to convert simple molecules into complex struc-
tures ultimately leading to self-replication or reproduction. This feature is evident
across all different forms of life, from small, and apparently simple bacteria, to
complex multi-cellular eukaryotes such as plants or humans. Metabolism, the net-
work of chemical reactions that occur in an organism, is one of the cornerstones
that makes life alive and the focus of this doctoral thesis.

Cells and bacteria are to a large extent comprised of similar content. First we
have the genome, that is the complete set of genetic material in an organism, made
up of DNA. Most of the genome is found on one or several chromosomes tightly
packed in the nucleus (in cells) or nucleoid (in bacteria), but DNA is also found on
plasmids, in chloroplasts and in the mitochondria of cells. It is the genetic material
of an organism that contains the specific information detailing growth, function
and replication that is inherited by every daughter cell.

Genes are stretches of DNA in the genome that encode for the production a protein.
The production of a protein from a gene is performed in several steps. First, the
gene is transcribed to a single-stranded copy in the form of RNA by the enzyme
RNA polymerase. If we now consider the somewhat simpler process in bacteria,
this piece of RNA (called messenger RNA or mRNA) is translated according to the
sequence of 3-letter codons into a sequence of amino acids provided by transport
RNA and joined in the ribosome to make the final protein.

Proteins perform a range of different tasks including signalling, membrane trans-
port and providing structure, but in the context of metabolism we are mostly in-
terested in the proteins that act as enzymes. Enzymes catalyze chemical reactions
and enable these reactions to occur at a rate that is sufficient to support cellular
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2 Introduction

maintenance, growth and replication. Furthermore, enzymes allow thermodynam-
ically unfavourable reactions to occur through coupling with reactions that release
energy (such as hydrolysis of ATP). Thus, it is the complete set of enzymes as dic-
tated by the enzyme-encoding genes in the genome that determine the metabolic
repertoire of a cell or bacterium, thereby defining the metabolic network of that
species.

We have in the last four decades seen an unimaginable revolution in DNA se-
quencing technology (van Dijk et al. 2018) and cost1 that allows us to sequence
and assemble the complete genome of most organisms. For example, the Human
Genome Project took 13 years from 1990 to complete one reference human gen-
ome (Collins et al. 2003), while the ongoing Earth BioGenome project aims to
sequence all known eukaryotic species (1.5 millons) within 10 years (Lewin et al.
2018). With a complete genome at hand one can use bioinformatic tools (Aziz
et al. 2008, Cantarel et al. 2008) to identify and functionally annotate genes in
the genome (at least for bacteria, there is still a considerable error-rate for euk-
aryotes (Salzberg 2019)), and map out the organism’s metabolism by connecting
this information with reaction databases that detail the chemical reaction catalyzed
by each enzyme. These reactions form the basis for genome-scale metabolic model
(GEM) reconstruction, a process that is further discussed in Chapter 3.

A GEM is not only an organism-specific knowledgebase that can aid mapping or
interpretation of big data, but when combined with linear algebra and optimization
algorithms it functions as a mathematical framework that can predict metabolic
phenotypes. This particular field of research, formally known as constraint-based
reconstruction and analysis (COBRA), has seen a wide range of applications ran-
ging from microbial communities to human medicine (Gu et al. 2019). The appre-
ciation of this framework comes from its ability to encompass the complete, and
extremely interconnected network of reactions that makes up metabolism, and by
doing so enlighten non-intuitive connections that would otherwise be missed.

This thesis describes the reconstruction and use of GEMs, but also a review of the
uncertainties that accompany this framework. We focus on two different species
and applications, but the modelling framework provides a common thread through-
out the text.

The first species, Streptomyces coelicolor, is a soil-dwelling bacterium armed with
a huge set of genes responsible for the production of bioactive molecules (Bentley
et al. 2002), and a model species for the phylum Actinobacteria that represents
a major source of novel drugs (Berdy 2005). The work on S. coelicolor is con-

1https://www.genome.gov/sequencingcostsdata



3

ducted within the INBioPharm2 project where we aim to produce novel natural
products through heterologous expression of biosynthetic gene clusters (BGCs) in
S. coelicolor. Heterologous expression (i.e. transcription and translation of non-
native genes) is one strategy for novel drug development that tries to overcome the
issue that most BGCs are not expressed in their native host in standard lab cultiv-
ations (Rutledge and Challis 2015). Paper 2 and 4 contribute to the overall goal
of this project by assessing potential strain design for enhanced performance as an
expression host and elucidating metabolic characteristics of a strain previously en-
gineered for that same purpose (Gomez-Escribano and Bibb 2011). Furthermore,
both papers improve on existing genome-scale metabolic models of S. coelicolor,
and as such provide a valuable tool both for the work presented here and for fu-
ture research on this organism. We also predict strain-engineering strategies for S.
coelicolor in Paper 3, but the main deliverable of this paper is a generic pipeline
for the reconstruction of metabolic pathways encoded by BGCs.

The second species is a tiny, marine picocyanobacterium that performs photosyn-
thesis, i.e. it uses sunlight, water and CO2 to obtain its carbon and energy necessary
for growth. Oxygen is a byproduct of this process. Another byproduct is organic
material which contributes to the very bottom of the marine food web. Being the
most abundant phototrophic marine bacterium, Prochlorococcus is responsible for
about 3.9% of the global net primary production (Flombaum et al. 2013, Field et al.
1998), that is the amount of fixed CO2 minus autotrophic respiration (Woodward
2007), and it has therefore a large impact on global climate. In Paper 5 we update
and apply a genome-scale metabolic model of a specific ecotype, namely Pro-
chlorococcus marinus MED43, to understand how different environmental factors
and the diel day-night cycle affects storage and release of fixed carbon.

The remaining parts of this doctoral thesis are outlined as follows: Chapter 2 cov-
ers basics of flux balance analysis (FBA) and associated methods used to analyse
GEMs. Chapter 3 outlines the process of GEM reconstruction. These two top-
ics are also discussed in depth in Paper 1, and these chapters therefore focus on
basic knowledge that is omitted or only briefly discussed later. Chapter 4 de-
scribes GEM applications, however with a focus on metabolic engineering and
omics integration which are of the most relevance to the content in Paper 2, 3 and
4. Chapter 5 describes an extension of FBA that is suited to model time-dependent
dynamics, which is later applied in Paper 5. Chapter 6 presents a very brief primer
on biosynthetic gene clusters, focused on the two biosynthetic classes addressed
in Paper 3, namely polyketide synthases (PKSs) and non-ribosomal peptide syn-

2Integrated Novel Natural Product Discovery and Production Platform for Accelerated Biophar-
maceutical Innovation from Microbial Biodiversity

3Now formally named Prochlorococcus marinus subsp. pastoris str. CMP1986.



4 Introduction

thases (NRPSs). Collectively, Chapter 2-6 are intended to provide the background
knowledge required to fully appreciate the detail later presented in the papers.
However, within these chapters I also point to specific methods used in the pa-
pers where appropriate. Furthermore, in Chapter 4.2, covering omics integration,
I briefly describe currently unpublished work on human alveolar macrophages.
Chapter 7 summarizes each of the 5 papers, while a conclusion and a broader out-
look are provided in Chapter 8 and 9, respectively. Finally, Paper 1-5, including
any supplemental text and figures, are appended. For other supplemental material
such as spreadsheets, BLAST-results etc., we refer the reader to the online material
provided with the preprints / journal publications.



Chapter 2

Constraint-based flux analysis

Although mathematical models of metabolism already were put to use in biochem-
istry and biochemical engineering more than three decades ago (Fell and Small
1986, Tyson and Othmer 1978), it was the sequencing and assembly of whole
microbial genomes (Blattner et al. 1997, Fleischmann et al. 1995) that enabled
development of models on the scale of the genome (Edwards and Palsson 1999;
2000). During the last two decades the field has developed to cover a wide scope
of applications and organisms, including bacteria, archaea, fungi, plants and mam-
mals (Gu et al. 2019). Despite this variety, these models and their use share certain
fundamental properties and assumptions that define the field of constraint-based re-
construction and analysis (COBRA). This basis is detailed below, starting with the
representation of reactions and metabolites as a stoichiometric matrix and trans-
itioning into flux balance analysis and other methods used to analyse these models.
This provides the necessary background for Paper 1 which reviews sources of un-
certainty, approaches for reducing uncertainty and frameworks that account for the
uncertainty in model reconstruction and analysis.

2.1 Metabolic networks
A metabolic network is a formal representation of a set of biochemical transforma-
tions (in the remaining text referred to as reactions), where each node is a metabol-
ite and each edge (link) represents a reaction. For example, the 3 reactions given
in Equation (2.1) are illustrated as a metabolic network in Figure 2.1. Within a
cell (or bacteria) most of the reactions are catalyzed by enzymes, but there are
also spontaneous reactions. The rates at which these chemical transformations
occur are in the following referred to as reaction fluxes, and within the COBRA
field flux values are usually reported in mmol per gram cell dry weight per hour

5



6 Constraint-based flux analysis

a db

c

R1 R3

R2

Figure 2.1: A minimal reaction network where the orange circles represent metabolites
and the arrows represent reactions.

(mmol gDW−1 h−1). Depending on the thermodynamic properties of each reac-
tion and the concentration of each metabolite, reactions can either be reversible
(like R2) or irreversible, meaning that they can only proceed in one direction.
While this network representation is sufficient in itself to understand the mass
balance of each metabolite, or to grasp the effect of any network perturbation, a
mathematical framework quickly becomes necessary with an increasing number
of reactions. Genome-scale metabolic networks consist of up to several thousands
of reactions and metabolites.

R1 : a→ b

R2 : b↔ 2c

R3 : b + 2c→ d

(2.1)

The stoichiometric matrix forms the basis for the mathematical framework used
to analyse GEMs, and it is a matrix where each metabolite is represented by a
row, and each reaction is represented by a column. Each matrix value reflects the
stoichiometry of one metabolite in one reaction, with production and consumption
represented as positive and negative values, respectively. For the example network
in Figure 2.1 with 3 reactions and 4 metabolites, the corresponding stoichiometric
matrix (S), with 4 rows (a-d) and 3 columns (R1-R3), is

S =


−1 0 0
1 −1 −1
0 2 −2
0 0 1

 (2.2)

However, in addition to intracellular reactions, GEMs also include transport reac-
tions that facilitate transport across membranes, reactions that represent a particu-
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a db

c

R1 R3

R2

a

c

Ta

TcEc

Ea Growth

Figure 2.2: A minimal metabolic model where extracellular and intracellular metabolites
are represented by red and yellow circles, respectively. The reactions are divided into
exchange (E), transport (T), growth and normal reactions (R).

lar cellular process (such as growth) or boundary reactions that allow metabolites
to enter or leave the system. By including these reactions, we get a minimal func-
tional metabolic model (Figure 2.2).

2.2 Flux balance analysis
One important property of the stoichiometric matrix is that the mass balance of
each metabolite (xi) is the product of the matrix and the rate (flux) of each reaction
(vi), i.e.

dxi
dt

=
∑
j

Sijvj , (2.3)

or for all metabolites, written in matrix notation:

Sv =
dx
dt
. (2.4)

This set of ordinary differential equations (ODEs) can be solved for short pathways
where the number of reactions are limited. However, the rate laws that connect
metabolite concentrations to reaction rates require numerical values for many kin-
etic parameters that are usually difficult to obtain. A further discussion on kinetic
modelling is outside the scope of this work, but interested readers are pointed to
the review by Saa and Nielsen (2017).

The ability to use this mathematical framework for metabolic models on the genome-
scale comes from the assumption that the metabolism operates at different pseudo-
steady states where metabolite levels are constant, i.e. no metabolite is accumu-
lated or depleted. This assumption is reasoned based on the different time-scales of
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Figure 2.3: Illustrating how the steady-state assumption and variable constraints lead to
a defined solution space that includes all allowable solutions. Flux balance analysis finds
an optimal solution by maximizing or minimizing a chosen objective. Figure reused with
permission from Orth et al. 2010. Copyright 2010, Springer Nature.

cellular processes: The turnover of metabolites is on the order of seconds (Buch-
holz et al. 2002), much faster than the transcription, translation and degradation of
proteins (minutes-hours) (Maier et al. 2011, Shamir et al. 2016). The result of this
assumption is that the right-hand side of Equation (2.4) is zero, reducing the set of
ODEs to the algebraic Equation (2.5).

Sv = 0 (2.5)

Solutions to this equation represent different combinations of reaction fluxes that
all satisfy the mass balance constraint. Because the number of reactions usually
is larger than the number of metabolites (or more precisely because the rank of S
is less than the number of unknown reaction fluxes) there is an infinite number of
solutions to this equation. The n-dimensional volume spanned by these solutions
is called the solution space (or the null space of S). In addition to the steady-state
constraint, solutions are further constrained by upper and lower bounds on the re-
action fluxes. It is common practice to set the minimum/maximum rate of all reac-
tion vi to −1000 mmol gDW−1 h−1 ≤ vi ≤ 1000 mmol gDW−1 h−1. Although
all reactions in principle are reversible, thermodynamic properties imply that cer-
tain reactions in practice only occur in one direction at cellular conditions. The
direction of these reactions are then imposed as constraints by setting the upper or
lower bound to zero. Furthermore, reaction bounds are used to constrain known
(or estimated) intracellular fluxes (such as ATP maintenance) or define maximal
uptake rates of metabolites present in the simulated nutrient environment. The
applied reaction bounds transform the initially unconstrained solution space to a
convex polytope that defines the allowable solution space (Figure 2.3).

Although the concept of a solution space might seem inconvenient at first, it is
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actually a flexible framework that allows a range of analyses and data integration.
First, one should appreciate that this solution space defines the range of possible
metabolic phenotypes for a particular organism in a particular environment, and as
such it defines to what extent the organism can act or adapt to reach a particular
objective through cellular regulation or adaptive laboratory evolution (Ibarra et al.
2002). Flux Balance Analysis (FBA) is the most common method used in this
context. FBA uses linear programming (also known as linear optimization) to find
one solution within the allowable solution space that maximizes (or minimizes)
a chosen objective (Orth et al. 2010, Varma and Palsson 1994a, Papoutsakis and
Meyer 1985, Fell and Small 1986, Edwards et al. 2002). Therefore, any solution
calculated by FBA is on the boundary of the solution space (Figure 2.3), either in
a corner, on an edge or on an n-dimensional plane. If the direction of the objective
function is perpendicular to any of the edges/planes that defines the solution space,
the FBA solution is not unique because any point along this edge/plane has the
same objective value. For GEMs, this is often the case. The FBA linear program
is defined as:

maximize Z = cT v
subject to :

Sv = 0,
ai ≤ vi ≤ bi ∀vi ∈ v.

(2.6)

Here, we find a flux vector v that maximizes the objective function c. The lower
and upper bounds for each reaction are given by ai and bi, respectively. Maxim-
ization of growth is the most common objective used in FBA (Gianchandani et al.
2008, Schuetz et al. 2007), based on the assumption that evolution has driven bac-
teria towards this maximum. Growth is represented in a GEM by a pseudo-reaction
consuming all biomass components (Lachance et al. 2019). These components and
their ratio can be experimentally determined (Beck et al. 2018). The applicabil-
ity of growth maximization and other objectives is discussed in Paper 1. If we
now continue to use the minimal cell example, we can use cobrapy (Ebrahim et al.
2013) to run FBA1 and predict the maximal growth rate (the only biomass com-
ponent is metabolite d) when both metabolite a and b are available in the growth
medium with maximum uptake rates of 1 and 3 mmol gDW−1 h−1, respectively
(Figure 2.4).

Many methods extend on FBA to capture more biologically relevant solutions,
either with additional constraints or additional objectives (Lewis et al. 2012). Of

1Get the notebook used to run this FBA calculation: http://tiny.cc/minimal-cell-fba
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a db

c

a

c

Ea = 1.0 Growth = 1.25

Ec = 3.0 Tc = 3.0
R2 = 0.25

R3 = 1.25R1 = 1.0Ta = 1.0

Figure 2.4: Predicted flux maximizing the growth (consumption of metabolite d) as pre-
dicted by FBA. The values are given in mmol gDW−1 h−1 and the color of the reaction
arrows corresponds to the flux rate.

these, parsimonious FBA (pFBA) is in particular worth mentioning because it
provides a simple, but effective option that increases the accuracy of FBA by intro-
ducing a second optimization step minimizing the total sum of absolute reaction
flux values (Lewis et al. 2010). The method is based on the idea that an organism
strives to achieve its goal at a minimum enzymatic cost. Later work has provided
some nuance to this picture by showing that microbes balance a trade-off between
optimization towards one particular objective and the ability to quickly adapt to
changing environments (Schuetz et al. 2012). Although pFBA doesn’t account
for differences in cellular cost of each enzyme nor the difference in enzymatic
activity, the method has proven to be equally good or better than a range of more
computationally demanding methods that leverage transcriptome data (Machado
and Herrgård 2014). Methods that include the cost and efficiency of enzymes are
discussed in Chapter 4.2, and in Paper 4 we use one of these methods to integrate
time-series proteomics into a GEM to compare the engineered S. coelicolor strain
M1152 with its wild-type ancestor.

2.3 Unbiased analysis of the solution space
Unbiased methods characterize the solution space without defining a cellular ob-
jective, and these methods are useful in situations where one cannot reasonably
assume that the organism is striving towards a well-defined objective. Also, these
methods can capture the variability of each reaction flux, thereby providing a
much more comprehensive description of the metabolic phenotype compared to
the single solution obtained with FBA or pFBA. Flux Variability Analysis (FVA)
determines the possible flux range for each reaction (Mahadevan and Schilling
2003, Gudmundsson and Thiele 2010) in a given setting (e.g. in a given environ-
ment or at a determined growth rate), and is frequently used to analyze alternat-
ive optimal or suboptimal solutions (Reed and Palsson 2004), or to describe the
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reduction in feasible phenotypes obtained from the introduction of additional con-
straints (Sánchez et al. 2017). Illustrations that contrast FVA with FBA and other
approaches are provided in Figure 2.5.

There are more sophisticated analytical methods that can characterize or decom-
pose the optimal solution space into biologically relevant elements (e.g. meta-
bolic pathways) (Klamt et al. 2017, Schuster and Hilgetag 1994, Maarleveld et al.
2015). However, a characterization of the complete solution space for a normal
sized GEM is for these methods still computationally intractable (Ullah et al.
2019). To this end, Monte-Carlo based sampling methods provide a feasible ap-
proach (Wiback et al. 2004). Most of the relevant methods rely on the hit-and-run
approach (Almaas et al. 2004, Schellenberger and Palsson 2009) (Figure 2.5C),
and recent implementations have drastically improved the sampling efficiency by
artificial centering, scaling and rounding of the solution space, and removal of ther-
modynamically infeasible loops (Haraldsdóttir et al. 2017, De Martino et al. 2015,
Megchelenbrink et al. 2014, Saa and Nielsen 2016). In Paper 4 we use a different
sampling approach that samples the vertices of the solutions space (Figure 2.5D).
This method does not suffer from auto-correlation between consecutive samples
and is also supposed to provide a more realistic estimate of mean flux standard de-
viations (Bordel et al. 2010), but the method cannot provide the the same level of
detail on flux distributions across the interior space as hit and run based methods.
In Paper 1 we provide more detail on flux sampling approaches, and how they can
be used to describe the uncertainty in model predictions.
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Figure 2.5: Comparison of FBA, FVA and flux sampling. A) FBA finds one objective
solution (orange dot), however this solution is rarely unique (alternative solutions shown
as light yellow dots). B) FVA identifies the maximum range for each flux variable. C) Hit
and run approaches randomly sample flux distributions from the complete solutions space.
D) The iterative objective sampling approach samples vertices of the solution space.



Chapter 3

Reconstruction of genome-scale
metabolic models

Model reconstruction is the process of assembling organism specific information
into a network representation that can be used to simulate metabolic phenotypes.
All details are described in an available protocol (Thiele and Palsson 2010), but the
process can in general be divided into 4 parts: 1) Genome annotation and assembly
of a draft reaction network; 2) Specification of growth environment(s); 3) Descrip-
tion of the biomass composition; and 4) Gap-filling of draft network reconstruc-
tion. These four parts, and in particular the associated uncertainty, and approaches
to mitigate, reduce or handle these uncertainties, are thoroughly discussed in Paper
1. Therefore, to avoid excessive repetition of content, this chapter provides a fairly
minimal description of these four parts. The last part of this chapter covers manual
curation and evaluation of model performance briefly. In combination with Pa-
per 1, this content provides the necessary background for appreciating the model
reconstruction efforts in Paper 2, 4 and 5.

3.1 Genome annotation
Annotation of a sequenced and assembled genome is the foundation for all model
reconstruction efforts and comprises identification of all protein encoding genes
in the genome and assignment of their function (Figure 3.1). For the purpose
of drafting a metabolic network, we are primarily interested in enzyme-encoding
genes and reactions catalyzed by the corresponding enzymes, in addition to mem-
brane bound proteins that facilitate the transport of metabolites in and out of the
cell or between different cellular compartments. The annotation of genes is in gen-
eral based on sequence homology to genes that encode for an enzyme with known

13
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function, and for prokaryotes usually performed with either RAST (Aziz et al.
2008) or PROKKA (Seemann 2014). Annotation of eukaryotic genomes are more
complicated and apparently still challenging (Salzberg 2019). However, as we dis-
cuss in Paper 1, considerable improvement in genome annotation is also possible
for prokaryotes by taking additional information into account.

Once the genes are annotated to specific enzymes one can map these genes to re-
action databases such as KEGG (Kanehisa and Goto 2000), MetaCyc (Karp et al.
2002) or MetaNetX (Moretti et al. 2016). This mapping does not only link genes
to reactions (via enzymes or transport proteins), but based on information in these
databases one obtains details about each reaction (full name, database ID and re-
lated metabolic pathways) and all associated metabolites (full name, chemical for-
mula, molecular weight and ionic charge). The gene-protein-reaction association
can be complex: several genes can encode the same enzyme (isogenes), enzymes
can be promiscuous and accept a variety of substrates, and thus facilitate sev-
eral different reactions in the metabolic network, and some reactions are catalyzed
by enzymatic complexes where all subunits are encoded by different genes. To
cover all these options the gene-protein-reaction mapping follows a boolean logic
based on and and or associations ensuring that in silico genetic modifications are
correctly propagated to the metabolic network. The endpoint for the genome an-
notation and reaction mapping processes is a draft metabolic network that can be
further curated manually or by gap-filling.

There are several pipelines that automate the generation of a draft metabolic net-
work reconstruction, and these have been reviewed recently (Mendoza et al. 2019).
These pipelines drastically speed up the reconstruction process, however additional
manual curation and quality control are still necessary to obtain a high-quality
model.

3.2 Growth environment
Both for subsequent gap-filling, and to simulate metabolic phenotypes in gen-
eral, it is necessary to determine at least one nutritional environment that supports
growth of the species subject to model reconstruction. As it is customary to assume
that all metal ions are present, this usually boils down to determine anaerobic or
aerobic conditions, available carbon, nitrogen, phosphate and sulphur containing
compounds, and at what rates these compounds can be consumed by the organism.
However, certain species require additional environmental stimuli to grow, e.g.
light for the phototrophic Prochlorococcus which is implemented and discussed in
Paper 5.

It is relatively easy to define growth-supporting environments for well-described
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Figure 3.1: The reactions (5) used to create a draft network are obtained from the genome
sequence (1) in several steps. First, annotation of the genome provides (2) an overview
of genes and (3) enzymes that the genes encode. Then, based on the function of each en-
zyme one generates (4) gene-protein-reaction mappings and (5) a first draft of the possible
metabolic reactions.

organisms, either by searching the literature or by using public databases such as
MediaDB (Richards et al. 2014) or KOMODO (Oberhardt et al. 2015). It is more
challenging to accurately determine specific uptake rates, but these can be calcu-
lated from measured metabolite depletion of the respective medium components.
A particular challenge in this context is that uptake rates can vary between dif-
ferent growth stages (as seen in Paper 4 for batch fermentation of S. coelicolor).
Furthermore, microbes can both co-utilize nutrients or consume nutrients sequen-
tially (known as diauxic growth). One can address these challenges by using dif-
ferent uptake rates for different growth stages, or by incorporating additional con-
straints on resource allocation (Salvy and Hatzimanikatis 2020). Nevertheless, for
subsequent quality control of predicted growth rate, one should also measure the
growth, either directly by measuring cell dry wight, by optical density, or by viable
cell counts. Furthermore, measurements of secreted byproducts can provide valu-
able constraints that improve model predictions. When the required experimental
data is in place, the calculations of growth, uptake and secretion rates are in prin-
ciple straightforward. However, when studying the change in metabolism through
different growth stages and medium depletion (such as for S. coelicolor in Paper
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4), accurately estimating these rates can be challenging, both because of insuffi-
cient temporal resolution and unclear growth phase transitions. Dynamic FBA,
where one simulates the time course of microbial growth, requires additional kin-
etic parameters that further complicates the determination of parameters associated
with the growth environment.

3.3 Biomass
Within the COBRA framework, growth is represented by a model (biomass) re-
action that consumes all compounds used to build the organisms’ macromolecular
components required for growth, weighted by their respective contribution. The
major components are proteins, RNA, DNA, lipids and carbohydrates, but there is
also a need for a range of vitamins and cofactors. The stoichiometric coefficients
in this biomass reaction are scaled to represent the amount needed to make 1 gram
of dry cell weight of the specific organism. Several recent laboratory protocols de-
scribe how these biomass components can be measured (Beck et al. 2018, Széliová
et al. 2020). Downstream calculations are now facilitated by a recent protocol and
software (Lachance et al. 2019).

In addition to the biomass components, one must also estimate the basis energy
required for cellular maintenance and the energy required for growth. The growth
associated maintenance (GAM) energy is included in the biomass reaction, while
the non-growth associated maintenance (NGAM) requirement is represented by
an ATP hydrolysis pseudoreaction that converts ATP to ADP and phosphate. The
GAM and NGAM requirements are estimated from the slope and intercept of the
linear trendline fitted to substrate consumption data or ATP demand estimates at
different growth rates (Thiele and Palsson 2010, Lachance et al. 2019).

3.4 Gap-filling
The draft network reconstruction obtained from mapping the annotated genome to
reaction databases has usually missing links that render the GEM infeasible (can’t
produce all biomass components) in one or several defined growth environments.
In general, gap-filling algorithms use a reaction database to include additional re-
actions (without genomic evidence) to fulfill known growth phenotypes. The new
reactions are usually selected with a MILP-approach that finds the minimal set
of reactions required to fulfill one growth phenotype. The complete gap-filling
procedure iteratively uses this MILP-approach for a number of different known
growth phenotypes. However, the final reaction network depends on the order
that the growth discrepancies are resolved (Biggs and Papin 2017), highlighting
the need for a probabilistic or ensemble-based approach, as recently demonstrated
by Medlock and Papin (2020) and further discussed in Paper 1.
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3.5 Manual curation, evaluation and maintenance
Manual curation of the metabolic network represents a significant amount of the
work required to make a high-quality GEM. In basic terms, this involves correcting
errors introduced in the automatic draft reconstruction process, curate and include
additional annotations to ensure interoperability, and curate the model network to
improve the accuracy in predicting known phenotypes. This process is iterative,
and often requires repeated cycles that introduce and evaluate the effect of new
changes.

A large library of growth and gene knockout phenotypes is very valuable in the
evaluation of model performance, and in particular large-scale transposon muta-
genesis or CRISPR knock-out studies that identify essential and non-essential
genes. Note that this type of knockout screens may not differentiate between
lethal gene knockouts and very slow growing mutants, and in Paper 2 we use a
50% reduction in growth rate as a threshold when comparing in silico knockout
phenotypes with the transposon mutagenesis data.

One issue with automatic model reconstruction pipelines, or similar semi-automatic
approaches used to search, map and obtain additional reactions databases, that was
encountered during our development of the S. coelicolor GEM is the presence of
redundant or very similar reactions and metabolites. E.g. KEGG contains for
certain compounds both a generic form and stereoisomers (e.g. D-glucose1). En-
zymes might be selective for one specific stereoisomer, and in the biosynthesis
of certain compounds different stereoisomers may lead to different products. For
example, polymerization of α D-glucose yields starch while polymerization of β
D-glucose yields cellulose. In terms of model reconstruction, ambiguity in reac-
tion specificity and presence of multiple variants of the same compound can lead
to redundant reactions or possibly disconnected pathways. Continuing with D-
glucose as the example, if one naively includes all reactions in KEGG that map to
the enzyme hexokinase (EC: 2.7.1.1) one obtains at least three reactions that con-
verts D-glucose to glucose 6-phosphate, one for each of the three aforementioned
variants.

It is important to ensure that all reactions in a metabolic model are mass and
charge balanced, to avoid non-biological solutions where mass or charge appear
from nothing. Because different reaction databases differ in how they report the
charge and chemical formula of metabolites, this may provide a significant amount
of work if one combine results from different databases. E.g KEGG reports the
chemical formula of the uncharged metabolite, while BioCyc reports the chemical

1D-glucose (C00031), α D-glucose (C00267) and β D-glucose (C00221).
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formula of the charged metabolite ion. Metabolites often appear as ions intracellu-
larly, and this is the preferred representation in GEMs. Despite the known import-
ance of mass and charge balancing, this was not achievable within our development
of the S. coelicolor GEM because of the extremely rich secondary metabolism,
where many of the intermediate compounds are not sufficiently characterized.

Substantial annotation to different namespaces increases the value of the GEM,
because it eases integration of different omics data or in silico co-cultivation of
microbial species which require a common namespace. As a general recommend-
ation, the MetaNetX cross reference seems to be the best link between different
reaction databases. However, for naming of model entities the BiGG nomen-
clature (King et al. 2016) seems preferable because of human interpretable ab-
breviations.

The COBRA community would in general benefit from more clear community
standards (Carey et al. 2020). An important contribution in this context is the
MEMOTE software for assessing the quality and coverage of a GEM (Lieven et al.
2020). Furthermore, the MEMOTE test suite can easily be expanded to cover
customs tests, as done in Sco-GEM for knockout and growth phenotypes. As such,
the MEMOTE framework and report can be leveraged to track model development
and do automatic unit testing in line the common practice in software development.



Chapter 4

GEM applications

The scope of genome-scale metabolic models has expanded drastically during the
last decades, both because of increased data availability and increased diversity of
model reconstructions that covers the complete range from relatively simple bac-
teria to male and female whole-body human models (Thiele et al. 2020). In com-
bination with a massive development of methods and algorithm (Figure 4.1), this
has allowed the application of GEMs to a wide range of industrial and scientific
topics, from human medicine to microbial metabolism and ecology. A compre-
hensive description of all methods and applications is beyond the scope of this
thesis, and we therefore point the reader to existing reviews (Gu et al. 2019, Lewis
et al. 2012). Rather, we focus on metabolic engineering and integration of omics
data, the two most relevant subtopics.

19
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Figure 4.1: There is now a complete phylogeny of methods for the analysis of GEMs.
These methods can be categorized as biased approaches (assuming that the organism has
a specific cellular objective) or unbiased approaches (such as random sampling). Figure
reused from Lewis et al. 2012. Copyright 2010, Springer Nature.
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Figure 4.2: Illustrating the concept of cell factories. Figure reused from Keasling 2010
with permission from AAAS.

4.1 Metabolic engineering
Metabolic engineering is the design of cells or microbes to improve their function
as cell factories, producing valuable compounds such as drugs, biofuel and chem-
icals from renewable feedstocks (Figure 4.2, Keasling (2010), Nielsen (2001)).

Once the ability of GEMs to predict the effect of gene deletions was demon-
strated (Förster et al. 2003, Edwards and Palsson 2000), this quickly emerged as a
potential application of genome-scale models Patil et al. (2004). Further work in
this context showed that the growth phenotype of gene knockout mutants could be
more accurately predicted by identifying the solution closest to the former wild-
type solution while satisfying the additional constraint placed on the network by
gene deletion (Segre et al. 2002).

Engineering of metabolic strains for a particular purpose was traditionally achieved
by by inducing random mutations and selecting optimal mutants by screening or
adaptive laboratory evolution. However, these strategies give little, or no, know-
ledge about the mechanisms underlying the improved characteristics. With the
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availability of genome-scale reconstruction of metabolic networks one could now
suggest rational strain-engineering strategies based on mechanistic genotype-phenotype
relations. To this end, Burgard and coworkers developed the first algorithms for
predicting optimal gene additions (Burgard and Maranas 2001) and knockouts (Bur-
gard et al. 2003). An important concept here is growth coupling. Here, one aims to
make the production of the target compound an obligatory by-product of growth,
so that the organism must produce this compound to achieve maximal growth rate
(Figure 4.3 A). In the wake of these contributions,m several different flavours ad-
dressing the same problem occurred (Figure 4.3B and C). RobustKnock (Tepper
and Shlomi 2010) and objective function tilting (Feist et al. 2010) also identify
optimal reaction knockout strategies, while OptGene (Patil et al. 2005) and Ge-
netic Design through Local Search (Lun et al. 2009) find optimal gene knockout
strategies, and are therefore more biologically relevant with respect to the effect of
corresponding genetic modifications. The latter method, Genetic Design through
Local Search, differs from the other methods by using heuristics combined with
optimization to identify possible solutions. This, and other similar approaches,
does not guarantee an optimal solution, but the computational cost scales better
with the number of knockouts (Patil et al. 2004), and is therefore in practice re-
quired for more than three knockouts. Several of these methods have been exper-
imentally validated, and later work have expanded the scope of predictions to up
and down regulation of specific genes, multiple objectives and more (Maia et al.
2016).
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Figure 4.3: Different aspects of rational strain design: A) growth coupling; B) the pro-
duction envelope and different solutions identified with different methods; C) Reaction vs
gene deletion algorithms. Figure reused from Lewis et al. 2012. Copyright 2010, Springer
Nature.
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4.2 Omics integration
Omics is a generic term that covers all kinds of large scale experimental measure-
ments or data sets that describes one specific layer of cellular or microbial life.
The following is not an exhaustive list of omic types, but it is sufficient in this
context: Genomic tools provide sequence data that describe genes and genomes,
transcriptomics measure RNA levels to detail the parts of the genome that are tran-
scribed under a specific condition, and metabolomics describe the abundance of all
intracellular metabolites. Technological developments have drastically increased
the access to different omics data, hence the increased use of GEMs in this con-
text. Genomics forms the basis for GEM reconstruction, and can furthermore be
used in multistrain analysis (Fang et al. 2020) or to interpret the effect of genetic
differences (Øyås et al. 2020). Below we focus on the other omic flavours that are
more commonly integrated with GEMs to improve model predictions.

Transcriptomics

Transcriptomics can be obtained either from microarrays with gene and organisms
specific probes, or more commonly nowadays, from RNA sequencing that determ-
ines the nucleotide sequence of all RNA in the sample (Stark et al. 2019). In con-
trast to other bioinformatic analyses, such as gene set enrichment analysis (Sub-
ramanian et al. 2005) and gene-co expression networks (Voigt et al. 2017), or data
visualization methods such as clustering, dimension reduction techniques and data
mapping (Gehlenborg et al. 2010), GEMs provide a mechanistic description of
biological systems that can reveal causal relations. For example, several methods
employ transcriptomics to constrain the solution space according the the transcript
levels of the enzyme-encoding genes by modulating the allowed flux through the
corresponding metabolic reactions as defined by the gene-protein-reaction associ-
ations. The fluxes can be constrained either in a continuous fashion (Colijn et al.
2009, Collins et al. 2012) or by turning metabolic reactions on/off according to
a determined expression level threshold (Åkesson et al. 2004, Jensen and Papin
2011). Other methods omit the need of a defined cellular objective by rather min-
imizing the difference between the flux distribution and gene expression data (Zur
et al. 2010, Lee et al. 2012, Shlomi et al. 2008). This concept is in particular use-
ful in multicellular organisms or other situations where a clear cellular objective
is not easily defined. However, when benchmarking these methods, none con-
sistently outperforms the other methods nor parsimonious FBA which doesn’t use
gene expression data at all (Machado and Herrgård 2014). One may hypothesize
that this lack of gain is due to immature or poorly developed methods, however it
seems more likely that this lack of success derives from the fundamental limita-
tions of this concept, where gene expression levels are used as a proxy for enzyme



4.2. Omics integration 25

abundances. Despite the clear mechanistic relation, several studies have shown
varying correlations between these two biological entities (Waldbauer et al. 2012,
Olivares-Hernández et al. 2011, Jayapal et al. 2008).

Other methods integrate gene expression data indirectly through transcriptional
regulatory networks (TRNs) (Cruz et al. 2020, Faria et al. 2014). TRNs are net-
works where the nodes are regulators and target genes, and the link describes the
regulatory association between these two elements. By integrating these networks
one can account for regulatory mechanisms that would otherwise not be considered
in FBA, and thereby improve model predictions (Cruz et al. 2020, Faria et al.
2014). However, because standardized frameworks for TRN reconstruction are
lacking and the data required for their reconstruction are not readily available,
complete TRNs, and therefore the use of these algorithms, are limited to the few,
most well-described organisms (Cruz et al. 2020). Transcriptomics can also be
used to generate context-specific models, representing e.g. a specific cell type in
multicellular organisms (Agren et al. 2012) or different individuals (Agren et al.
2014). Their reconstruction is based the tailoring a generic GEM according to the
genes that are expressed in each context. For a more detailed description of this
methodology we refer the reader to a recent review (Cho et al. 2019).

Proteomics

One obvious limitation of FBA is the lack of constraints that ensure predicted
fluxes to be within a range that is feasible given the amount and efficiency of the
present enzymes. Although the reaction flux (v) of an enzymatic reaction, as de-
scribed by the Michelis-Menten equation (Equation 4.1, see Schnell (2014) for
a discussion on assumptions and limitations), depends on the substrate concentra-
tion [S], one can define a maximum possible rate as the product of the turnover rate
and concentration of each enzyme, i.e. Vmax = [E] · kcat. The turnover rates (kcat
values) can be obtained from enzyme databases such as BRENDA (Schomburg
et al. 2002), however one should be aware that these values come with a consider-
able uncertainty, both because of different experimental conditions (Bar-Even et al.
2011) and a difference between in vivo and in vitro values (Davidi et al. 2016).
Furthermore, the coefficients are often not available for all enzyme-substrate com-
binations or for the particular organism of interest. E.g. in our development of the
enzyme-constrained S. coelicolor GEM in Paper 4, 88% of the obtained turnover
rates matched the exact EC number, 32% matched the correct substrate, and only
5% of the values were measured in S. coelicolor.

v = Vmax
[S]

KM + [s]
(4.1)
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The first COBRA methods to incorporate enzyme coefficients used a global con-
straint to represent the limited cellular volume (Beg et al. 2007), limited membrane
space (Zhuang et al. 2011b), macromolecular resource allocation (Goelzer et al.
2011), or maximum protein mass, either in total (Adadi et al. 2012) or divided
by different cellular functions (Mori et al. 2016). These methods have indeed
improved GEM predictions, e.g. by predicting inefficient metabolism in cancer
cells (Shlomi et al. 2011) and overflow metabolism in E. coli (Basan et al. 2015).
ME-models also include macromolecular allocation constraints, in addition to a
more detailed description of the cellular machinery required to produce these mac-
romolecules (Thiele et al. 2012, O’brien et al. 2013). For an in depth review of
resource allocation in GEMs we refer the reader to a recent review (Yang et al.
2018).

GECKO is a recently developed extension of the global protein constraint meth-
ods, formulated and designed to constrain the flux through each reaction accord-
ing to measured protein abundances (Figure 4.4). In this framework, each reaction
catalyzed by an enzyme is modified to include this enzyme as a pseudo-substrate.
These pseudo substrates, that represent allocation of each enzyme, are drawn either
from an enzyme pool (if the abundance of this enzyme is not measured) or from
an exchange reaction with its flux constrained according to the measured abund-
ance. The reconstruction of GECKO-formulated GEMs is carried out in a semi-
automatic fashion: initial enzyme coefficients are automatically obtained from
BRENDA (Schomburg et al. 2002), but these values must be curated to avoid over-
constraining the model. This curation is performed by iteratively identifying and
modifying growth limiting turnover rates until the model can sustain a growth rate
as expected from experimental data. In Paper 4 we use this framework to generate
in total 17 different GEMs according to strain and time point specific proteome
data.
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Figure 4.4: Illustration of the GECKO method for incorporation of enzyme coefficients
and proteomics. A) The difference between a classical GEM and a GECKO-formulated ex-
tension that takes into account the allocation of enzymes required to maintain the predicted
flux through each reaction. B) The incorporation of enzyme coefficients and proteomics
is mathematically achieved by extending the stoichiometric by extra rows that describes
the enzyme abundance constraints, limiting the allocation of each enzyme to the measured
abundance. Figure reused from Sánchez et al. (2017), under the license CC-BY-4.0
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Figure 4.5: Illustration of the unsteady-FBA approach. Figure reused from Bordbar et al.
2017, under the license CC-BY-4.0.

Metabolomics

As metabolite concentrations are not represented in FBA, the use of (intracellular)
metabolomics data requires additional computation for its integration. Note that
exometabolomics, i.e. measurements of the concentration of growth medium com-
ponents, are frequently used to estimate GEM uptake and secretion rates (Aurich
et al. 2016), and therefore differ from intracellular metabolite measurements in
its applicability. The unsteady-FBA (uFBA) approach represents one successful
integration of metabolomics data (Figure 4.5; Bordbar et al. 2017). Here, the
authors use time-course metabolite measurements to estimate the rate of change
of both medium components and intracellular metabolites, and subsequently in-
tegrate metabolite accumulation or depletion into the right hand side of the mass
balance equation. This gives an increased accuracy in the prediction of dynamic
flux states on red blood cells, platelets and in S. cerevisiae (baker’s yeast).

Integration of metabolomics data in a human alveolar macrophage GEM

In currently unpublished work, we have tried to use uFBA to reveal metabolic dif-
ferences between human alveolar macrophages stimulated by different ligands. A
ligand is a molecule that binds to a certain receptor to trigger a cellular response,
and it this work we used 7 different ligands that bind to Toll-like receptors to trigger
an immune response similar to the one that occurs upon detection of a pathogenic
microbe. The metabolomics data cover describe the concentration of 60 different
intracellular metabolites measured at five time points, i.e. at 2, 4, 6, 8 and 24
hours. Prior to uFBA calculations, we used statistical analyses to identify meta-
bolite concentrations that differed between the ligand-stimulated macrophages and
the control.We found a few important metabolites, and in particular a range of nuc-
leotides, that showed a clear difference across several ligands. However, for the
uFBA integration, we first realized that very few metabolite accumulation or de-
pletion rates were significantly different from zero. We interpreted this as a low
signal-to-noise ratio associated with this type of measurements, rather than actu-
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ally a lack of signal. We continued with the calculated trends and used uFBA
to predict the metabolic state for each time interval for each of the 8 differently
stimulated macrophage samples. We also used extracellular measurements of the
glucose and glutamine consumption in addition to lactate production to constrain
the models. However, these exometabolome measurements were only conducted
at the end of the experiment, and thus, the uptake and secretion rates were con-
strained to the same values for all time intervals within each macrophage sample.
We used a parsimonious variant of uFBA, both with nitric oxide production and
ATP production as objectives to predict metabolic phenotypes, and found that the
signal from the integrated intracellular metabolite accumulation or depletion rates
was very small compared to the effect of different uptake and secretion rates. It
was therefore difficult to obtain any time point specific details from these analyses,
and we concluded that a shorter time scale (so that the accumulation and depletion
rates are larger) are necessary for a successful use of uFBA.

Instead, we implemented another method for metabolomics data integration. Thermodynamic-
based Flux Analysis (TFA) uses calculations of the Gibbs Free energy to ensure
that all reactions are thermodynamically feasible according to the second law of
thermodynamics (Henry et al. 2007), i.e. a reaction flux can only be positive if
the change in Gibbs Free energy of that reaction is negative. The TFA method
has been used to characterize different biological systems (Stanway et al. 2019,
Hadadi et al. 2020), but to our knowledge, not in such a large scale comparison of
strains and time points. The change in Gibbs Free energy can be calculated with
the group contribution method (Jankowski et al. 2008), and depends on the chem-
ical groups and concentration of the reaction substrates and products. Therefore,
our hypothesis is that the different metabolite concentrations affect the macro-
phage metabolism by changing the direction (or reversibility) of certain reactions.
We have created TFA models for all time points and macrophage samples using
pyTFA (Salvy et al. 2019), and are now analysing this data. This analysis has
been partly hampered by lack of robust and reproducible results that may derive
from the python implementation of TFA, but preliminary results indicate that some
of the reactions in the nucleotide metabolism are indeed affected by the different
metabolite levels.
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Chapter 5

Dynamic flux balance analysis

We have up to this point not considered dynamic systems that require a tem-
poral dimension in FBA. The study of Prochlorococcus is such a system, where
the metabolism has a diel periodicity that is dictated by light-driven photosyn-
thesis (Zinser et al. 2009). This leads to a dynamic accumulation and depletion of
carbon storage in the form of glycogen (Szul et al. 2019).

Dynamic FBA (dFBA) is an extension of FBA that replicates the dynamics of
growth by dividing the total time span into discrete time intervals (Varma and Pals-
son 1994b, Mahadevan et al. 2002). FBA or pFBA can then used to sequentially
simulate growth in each time step (Figure 5.1). Between each time step, the FBA
result is used to update the medium composition according the metabolites that
have been consumed or produced by the organism, and the total biomass accord-
ing to the predicted growth rate. Thus, in contrast to regular FBA, where maximal
uptake rates are explicitly defined as bounds on exchange reactions, the uptake
rates in dFBA are predicted from the metabolite concentrations in the medium,
usually using the Michelis-Menten equation (Equation 4.1). Therefore, dFBA re-
quires the additional parameters Vmax andKM for each nutrient to enable accurate
predictions.

Several different flavours of dFBA have been used to study the diel cycle in cy-
anobacteria (Baroukh et al. 2014; 2015, Sarkar et al. 2019, Rügen et al. 2015, Re-
imers et al. 2017, Knoop et al. 2013), with different methods used to account for
the varying light availability and hence ability to produce biomass components.
For example, in the CycleSyn method each day is divided into 2-hours periods,
each time period with different light availability (Sarkar et al. 2019). Furthermore,
reaction fluxes are constrained by temporal trancriptomics data and intracellular
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Figure 5.1: Illustration of Dynamic FBA, here used to simulate the batch fermentation of
E. coli. The top left panel shows the growth, the top right panel shows glucose consump-
tion, and the bottom panel shows first acetate production, followed by acetate consumption
once all the glucose is consumed. Figure reused from Varma and Palsson 1994b with per-
mission. Copyright 1994, American Society for Microbiology.

metabolites can be carried over to later time periods to allow accumulation of im-
portant nutrients during the day. Then, the reaction fluxes as well as transfer fluxes
(representing storage) in all time periods are predicted in a single optimization step
that optimizes the drain of biomass in the last time period. This allows different
biomass components to be produced at different time points throughout the day,
and was shown to simulate measured glycogen storage in Synechocystis. A second
approach uses a standard dFBA scheme but imposes a time-dependent biomass
equation (Knoop et al. 2013). Finally, a third, and very interesting approach that is
similar to Resource Balance Analysis (Goelzer et al. 2011), takes into account the
allocation of all macromolecules required to sustain light absorption, metabolism
and growth throughout the diel cycle (Rügen et al. 2015, Reimers et al. 2017). The
approach uses a non-linear optimization to maximize the the total growth over 24
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hours, and this allow the authors to study optimal allocation of cellular resources,
including glycogen storage.

Dynamic FBA has also gained particular attention in the study of microbial in-
teractions, and has this has led to the development of several dedicated software
packages (Gomez et al. 2014, Zomorrodi et al. 2014, Zhuang et al. 2011a), where
some also takes into account spatial dynamics, such as COMETS (Harcombe et al.
2014, Dukovski et al. 2020) and BacArena (Bauer et al. 2017). COMETS is a
powerful tool that now has been expanded to cover extracellular enzymes, evol-
ution, demographic and growth noise, dynamic medium conditions and light ab-
sorption (Dukovski et al. 2020). The two latter features were developed in in Paper
5 to facilitate our dynamic FBA simulations of Prochloroccus. The light availab-
ility is modelled using a sinusoidal wave form during the day (12 hours) and no
light during the night time, while the actual light absorption is calculated using the
Beer-Lambert law. Still, the simulations rely on a few simplifications: energy dis-
sipation is not taken into account, and we assumed monochromatic light of 680 nm,
and we did not weight the absorption light of the different photosystems according
to their different absorption spectra. Also, we did not take into account that Pro-
chlorococcus may be able to regulate the abundance of photosynthetic pigments to
adjust light absorption. Despite these simplifications, the developed framework is
a considerable contribution that will increase COMETS’ relevance in future stud-
ies of phototrophic or mixotrophic organisms. As we show in Paper 5, the ability
to simulate day-night cycles with dynamic allocation of carbon reveals aspects of
Prochlorococcus beyond the scope of standard FBA.

COMETS is a population-based method where the growth of each organism in
each cell of the spatial grid is considered a continuous increase in biomass. Thus,
this made it difficult to take into account the diel life cycle of Prochloroccus where
cell division is mainly performed in the afternoon and early evening (Vaulot et al.
1995). This kind of cellular processes might have been easier to account for in
an agent based framework such as BacAreana (Bauer et al. 2017) which runs an
individual FBA model for each individual.
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Chapter 6

Biosynthetic gene clusters

Biosynthetic gene clusters (BGCs) are groups of genes that are physically co-
located on a genome and in total encode the enzymes required for the biosynthesis
of a natural product (Medema et al. 2015). In addition to enzyme encoding genes,
BGCs often also contain pathway-specific regulatory (Liu et al. 2013, Rigali et al.
2018), transport genes (Crits-Christoph et al. 2020), and genes responsible for res-
istance mechanisms protecting the cell or bacterium from self-damage caused by
the final product (Alanjary et al. 2017). BGCs are most often found in bacteria or
fungi, and the associated compounds comprise a wide range of different classes of
natural products (Figure 6.1). These classes are of utmost interest in drug discovery
because of their already demonstrated value as antibiotic, anticancer and antifungal
drugs (Cragg and Newman 2013, Harvey 2008). In this context, the Streptomyces
genus in the phylum of Actinobacteria is of particular interest as the most dom-
inant source (Berdy 2005, Cimermancic et al. 2014). Streptomyces coelicolor is
a model species for this phylum with well-established experimental protocols for
reproducible cultivations and sampling of omics data, partly developed in previous
SINTEF projects (Wentzel et al. 2012, Nieselt et al. 2010, Thomas et al. 2012).

As the developed pipeline in Paper 3 is currently limited to polyketides and non-
ribosomal peptides (NRPs), produced by polyketides synthases (PKSs) and non-
ribosomal peptide synthetases (NRPSs), respectively, we here focus on these two
biosynthetic classes. These two classes are the most abundant classes of experi-
mentally verified BGCs according to the MIBiG database (Kautsar et al. 2020; Fig-
ure 6.1), but probably not the most abundant classes in nature (Cimermancic et al.
2014). However, they are of immense importance in drug discovery (Masschelein
et al. 2017).
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Figure 6.1: Distribution of the taxonomic kingdoms and biosynthetic classes of the BGCs
in MIBiG. Content newly added in MIBiG 2.0 is shown in green. The connected circles in
the lower panel indicate hybrid variants. Figure reused from Kautsar et al. 2020 under the
license CC-BY-4.0.

Biosynthesis of NRPs and polyketides are conceptually similar, both governed
by multidomain enzyme complexes that extend a growing polymer in a modular
fashion (Figure 6.2, see Challis and Naismith 2004 and Keatinge-Clay 2012 for
reviews of these two subjects, respectively). The general structure of an NRPS
or PKS assembly line starts with a loading domain that attaches the first building
block to a peptidyl carrier protein (PCP) or acyl carrier protein (ACP), respect-
ively. Then, a number of elongation modules follow, each module containing at
least three functional domains (abbreviations in the following text correspond to
symbols in Figure 6.2). In NPRPs these three domains are an adenylation domain
(A) that activates and attaches a specific amino acid onto the the carrier domain



37

Figure 6.2: Illustrating the biosynthesis of a NRP-PKS hybrid compound, containing both
NRPS and PKS modules. The top arrows represents genes, and each gene can contain
several modules. Each module adds append one monomer to the growing polymer. The
functional domains in each module are represented by coloured spheres. Figure reused
from Nakashima et al. 2016 under the license CC-BY-4.0.

(PCP), and finally a condensation domain (C) that catalyzes the formation of pep-
tide bonds to elongate the peptide chain. In PKSs the corresponding operations
are carried out by an acyltransferase (AT) that attaches the acyl-group from an
acyl-CoA onto the carrier domain (ACP), and finally a ketosynthase domain (KS)
that catalyzes a Claissen condensation reaction to elongate the peptide chain. The
final module contains and thioesterase or thioester reductase domain that cleaves
of the polymer from the carrier protein to release the product from the enzyme
complex. Both NRPS and PKS modules can contain additional functional mod-
ules that modify the structure of the polyketide chain, and we refer to Table 1 in
Paper 2 for a full overview of these domains, including their functions and abbrevi-
ations. NRPS-PKS hybrid BGCs are also frequent, combining functional modules
from each biosynthetic class (Figure 6.2). This adds to the already huge diversity
of natural products associated with these two classes of BGCs. Note that a par-
ticular type PKSs, mostly found in fungi, uses the polyketide-elongating modules
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iteratively (Cox et al. 2018), and differs from the collinear biosynthesis presented
here.

The ability to identify potentially novel natural products from genome-sequences
marks a conceptual change in drug discovery, formerly based on large-scale bio-
activity screening. The diversity of computational approaches in this context is
reviewed elsewhere (Medema and Fischbach 2015, Weber and Kim 2016). AntiS-
MASH is one of the more popular tools, defined as a high-confidence/low-novelty
approach that uses DNA sequence signatures associated with known BGC do-
mains to search for similar patterns in a target genome (Medema et al. 2011).
For each identified BGC, antiSMASH details the genes present including func-
tional modules and domains, and as such provides most of the information re-
quired to assemble the encoded biosynthetic pathway. In Paper 2 we use output
from antiSMASH to automatically reconstruct PKS and NRPS biosynthesis path-
ways, thereby making antiSMASH a more accessible tool for in silico guided strain
design of heterologous expression hosts.



Chapter 7

Summary of papers

This doctoral thesis contains one review and four research papers. Collectively,
the four research papers present a diverse range of GEM applications, covering in
silico strain-engineering, integration of omics data, dynamic simulations, and both
biased and unbiased analyses of the steady-state solution space of the stoichiomet-
ric matrix. Because the review paper adds to the already presented background
knowledge on GEM reconstruction and analysis, and thus sets the stage for Paper
2-5, this work is presented first. Paper 2, 3 and 4 are associated with the IN-
BioPharm project, with an overarching goal of developing tools and knowledge
required to ultimately improve on existing S. coelicolor strains for heterologous
expression of BGCs. In Paper 5 the goal is to increase our general understating of
how carbon allocation and release is determined by the diel cycle and changes in
environmental parameters.

Paper 1 - Addressing Uncertainty in Genome-Scale Metabolic Model Recon-
struction and Analysis

During the last two decades GEMs have proven to be versatile tools that are ap-
plicable to a wide range of research questions across different scientific discip-
lines (Gu et al. 2019). However, interpretation of model predictions are frequently
hampered by the uncertainties associated with model reconstruction and analysis.
In this review we present a comprehensive overview of the sources of uncertainty,
and claim that the COBRA framework could benefit from a better representation of
uncertainty, comprising both model reconstruction and analysis. We also describe
existing approaches for representing or reducing model uncertainties, and suggest
that ensemble-based or Bayesian approaches are potential frameworks that can be
valuable in this context.
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Paper 2 - Predicting Strain Engineering Strategies Using iKS1317: A Genome-
Scale Metabolic Model of Streptomyces coelicolor

This is the first of our two papers concerning the reconstruction of a genome-scale
metabolic model of Streptomyces coelicolor. The developed model, iKS1317, is
based on content from two existing S. coelicolor GEMs (Kim et al. 2014, Alam
et al. 2010), but we further expand on this knowledge by adding reactions from
reaction databases, from the literature and from comparative genome alignment
of genes with incomplete functional annotation. We assemble a set of growth and
knockout phenotype data from the literature that we use to evaluate model perform-
ance and identify inaccuracies. Finally, we use two existing algorithms (Burgard
et al. 2003, Lun et al. 2009) to predict strain-engineering strategies for increased
availability of acetyl-CoA, an important precursor for polyketide biosynthesis.

Paper 3 - Automatic reconstruction of metabolic pathways from identified
biosynthetic gene clusters

One of the main benefits of using GEMs to suggest strain-engineering strategies
is the ability to account for the complete metabolic requirements for the synthesis
of a particular compound, including cofactor and energy demands. However, one
cannot fully leverage this framework in the context of heterologous expression of
BGCs, unless one can make fairly accurate reconstructions of the associated bio-
synthetic pathways. Most of the information required for this pathway reconstruc-
tion is contained in the output of genome mining tools such as antiSMASH (Me-
dema et al. 2011), but the manual effort and knowledge required to convert this
data into a metabolic pathway are hampering the use of GEMs in this context. In
this paper we develop a pipeline that automates this process, and we apply the
pipeline to 943 metabolic pathways from a corresponding number of BGCs from
the MIBiG database (Kautsar et al. 2020).

Paper 4 - Enzyme-Constrained Models and Omics Analysis of Streptomyces
coelicolor Reveal Metabolic Changes that Enhance Heterologous Production

The first part of this paper covers the integration of iKS1317, presented in Pa-
per 2, with two other updates of the S. coelicolor GEMs also published in 2018.
Furthermore, we curate transport reactions, we inform the reversibility of model
reactions based on calculated values for the change in Gibbs Free Energy, and
we update the biomass equation with respect to prosthetic groups. GEM curation
and development is a continuous process, and to facilitate further development and
contributions from the scientific community we host the consensus S. coelicolor
GEM publicly on GitHub. The remaining parts of the paper provide a compre-
hensive comparison of S. coelicolor M1152, a strain engineered for the purpose of
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heterologous expression (Gomez-Escribano and Bibb 2011), with its wild-type (al-
though devoid of plasmids) ancestor M145. We compare these two strains on the
transcriptional level, on cultivation data, on proteome abundances and on the level
of metabolic fluxes. The flux data are simulated by randomly sampling time- and
strain-specific versions of the consensus S. coelicolor GEM, each model version
with reaction fluxes constrained according to the measured enzyme abundances.
We try to connect the genetic modifications of M1152 to the observed pheno-
type, but this is partly hampered by the complexity of regulatory mechanisms in
S. coelicolor and the poossible epistatic interactions. However, the results indicate
that regulatory mechanisms are more important than the available precursor pool
when it comes to heterologus expression and production of novel natural products.
Furthermore, we describe several interesting discrepancies between the two strains
that can serve as hypothesis in future research on this subject. For example, we
suggest that the reduced growth rate in M1152 can derive from oxidative stress.

Paper 5 - Dynamic allocation of carbon storage and nutrient-dependent ex-
udation in a revised genome-scale model of Prochlorococcus

The main goal of this paper is to understand how nutrients and availability of light
affect the allocation and release of carbon in Prochlorococcus. First, we update the
previous Prochlorococcus GEM (Casey et al. 2016) using a novel method that it-
eratively adds new reactions while ensuring complete connectivity of the network.
Then, to understand how different nutrient environments affect the metabolism of
Prochlorococcus we sample 10,000 nutrient environments that differ in availab-
ility of light, bicarbonate, phosphate and ammonium. For each environment we
characterize the metabolic phenotype by using FBA, pFBA and FVA, and explore
correlations between the four sampled "nutrients" and the predicted exudation of
different metabolites. We find that glycogen storage or exudation of organic acids
are favourable when the growth is limited by ammonium, while exudation of amino
acids becomes more likely when the availability of phosphate is low. Finally, we
run dFBA simulations through day-night cycles to find out how the diel availabil-
ity of photons and dynamic storage of intracellular carbon in the form of glycogen
affect its metabolism, both in terms of intracellular rewiring and with respect to
the release of metabolites into the environment. In agreement with previous ob-
servations Zavřel et al. (2019), we find that glycogen is stored when growth is
nutrient-limited, and we find that the consumption of intracellular glycogen is ac-
companied by an onset of the pentose phosphate pathway and exudation of organic
acids.
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Chapter 8

Conclusion

This work has covered a diverse use of genome-scale models, both in terms of dif-
ferent organisms and different applications. Initially, we focused on curation and
evaluation of the iKS1317 GEM of S. coelicolor that ultimately evolved into Paper
2. Two other research groups published their own update of the S. coelicolor GEM
within the same year. This proved the general interest in GEMs and constraint-
based analyses from the Streptomyces scientific community, but it also revealed
issues with independent efforts of individual research groups in model develop-
ment. These three GEMs were based on the same template, but because of the dif-
ferent scope of each contribution, these three models now differed in content and
to some extent also in namespace. To address the inconvenience of three different
models of the same strain, we joined forces with one of the two other groups1 in a
completely open source and transparent development of a consensus S. coelicolor
GEM, similar to previous initiatives on bakers’ yeast (Lu et al. 2019) and Chinese
Hamster Ovary (Hefzi et al. 2016). This consensus model is now hosted publicly
on GitHub, and anyone can browse the complete history of the model develop-
ment. Although this effort merged the content of the three preceding models and
further improved the model with respect to transport reactions, reaction reversibil-
ity and prosthetic groups, there is still room for improvement of Sco-GEM. Known
issues and potential improvements are tracked and discussed openly on the GitHub
repository, and anyone can contribute to further development through pull requests
by posting new issues. As such, this framework facilitate a continuous model de-
velopment that extends beyond the time frames and capacity of individual projects
and research groups. However, future value depends on active maintenance and
involvement from the research community.

1Eduard Kerkhoven, Chalmers University of Technology, Sweden
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The scope of the INBioPharm project has defined the questions and applications
of S. coelicolor GEMs within this PhD work. First, we applied two strain engin-
eering algorithms, OptKnock (Burgard et al. 2003) and GDLS (Lun et al. 2009), to
explore general strain engineering strategies towards increased production of poly-
ketides. Similar to previous S. coelicolor host development (Gomez-Escribano
and Bibb 2011), we wanted to search for strategies that would improve heterolog-
ous production in S. coelicolor in general, and not tailored to one specific com-
pound. We opted at improving the availability of malonyl-CoA, the most used pre-
cursor for polyketide biosynthesis, through gene knockouts. Increased malonyl-
CoA availability, through overexpression of the enzyme that converts acetyl-CoA
to malonyl-CoA, had already been shown to increase the yield of the native poly-
ketide actinorhodin (Ryu et al. 2006). Acetyl-CoA is the immediate source of
malonyl-CoA. Therefore, we searched for single, double and triple reaction knock-
outs that would increase the rate through pyruvate dehydrogenase, forming acetyl-
CoA from pyruvate and coenzyme A, across three different environments. We
spanned different environments to increase the robustness of the predicted strain
design strategies. Our results suggested double and triple knockout strategies that
could provide a possible 2-fold increase in the flux through pyruvate dehydro-
genase. However, none of the suggested knockout strategies resulted in a pheno-
type where the flux through pyruvate dehydrogenase was more strongly coupled
to growth than in the wild-type, and in that sense the suggested strategies are not
robust.

Although the suggested strategies have not been evaluated by actual genetic modi-
fications and in vitro cultivations, the approach that was chosen has, in retrospect,
a few caveats. First, increasing the flux through pyruvate dehydrogenase does
not capture the fact that there is a real metabolite drain in the case where a final
compound is actually produced and secreted. In our simulated experiments, the
increased acetyl-CoA production has to be balanced by an increase in reactions
that recycle and reuse this compound. Therefore, one may anticipate more bio-
logically relevant predictions by optimization of a pseudo reaction that consumes
the acyl moiety of acetyl- or malonyl-CoA, and releases coenzyme A back into
the system, more closely replicating the incorporation of malonyl-CoA into the
polyketide chain.

Furthermore, one of the benefits of using GEMs to guide strain development is
the ability to account for more complex questions. Thus, as long as the metabolic
pathway responsible for the synthesis of a particular compound is known, GEMs
can easily be used to predict strain development strategies that is not limited to
precursor pools, but also account for cofactor and energy demands. This motiv-
ated the development of the BigMeC pipeline for the automatic reconstruction of
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metabolic pathways from identified biosynthetic gene clusters, presented in Pa-
per 3. Leveraging this tool, we were able to explore single gene knockouts that
increase metabolite production for 943 BGCs from the MIBiG database (Kaut-
sar et al. 2020). Results indicate that single reaction knockouts are insufficient to
provide a valuable increase in production rates in S. coelicolor for polyketides and
non-ribosomal peptides. However, we foresee that this tool can be of value in fu-
ture drug discovery, either in the initial selection of BGCs for further research, to
suggest strain-engineering strategies, or to select the the optimal BGC expression
host.

Our second application of the S. coelicolor GEM aimed at unravelling the meta-
bolic differences between the M145 strain (wild-type devoid of the two plasmids)
and the derived M1152 strain that has been engineered towards increased hetero-
logous production by a point mutation in the rpoB and removal of four biosynthetic
gene clusters. To this end we used a recently developed framework to incorporate
enzymatic parameters (catalytic rate and enzyme mass), time-series proteome and
cultivation data for both strains. The data was collected at regular intervals during
a batch fermentation covering the initial lag and growth phase, depletion of phos-
phate and the onset of secondary metabolism. The measured protein levels at each
time step for each strain were used along with the cultivation data to constrain the
solution space. Because the cellular objective is likely to change throughout the
cultivations, we opted at an unbiased approach to describe how these constraints
shaped the metabolism both between the two strain and throughout the cultiva-
tions. We contrasted the model predictions with transcriptome data to get a more
holistic understanding. With this approach we were able to capture both known
and novel strain differences. These observations will be important in future de-
velopment of S. coelicolor for heterologous expression of BGCs. For example,
the absence of Actinorhodin may affect the redox-regulator SoxR, and indeed, the
omics data indicate that S. coelicolor M1152 suffers from oxidative stress. This
may explain the slowed growth of this strain. Furthermore, it is possible that the
deletion of ScbR2, which is a part of the cpk BGC responsible for the production of
Coelimycin P1, affects global regulators. Correspondingly, global differences in
the proteome and transcriptome of these two strain indicate that global regulators
are affected by the genetic alterations in M1152. However, because of the large
genetic difference between these two strains it is difficult to pinpoint whether the
observed differences are caused by the rpoB mutation or by absence of the four
BGCs. The extremely complex and not fully described regulatory mechanisms in
S. coelicolor adds to this difficulty. In retrospect, it is clear that it would have been
beneficial to include the intermediate strain M1146. Nevertheless, we suggest that
regulatory mechanisms may play a more important role than the availability of
precursor pools for increased production of bioactive molecules encoded by BGCs
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heterologously expressed in S. coelicolor.

The phototrophic Prochlorococcus encourages different research questions com-
pared to S. coelicolor, which mostly have been directed towards drug discovery. As
a primary producer, it is of utmost interest to understand how various nutritional
access and environmental conditions affect which, and to what extent, different
organic compounds are released into the ocean space. We targeted this question
by randomly sampling different environments, with different access to sunlight,
ammonium, phosphate and bicarbonate. To replicate the unavoidable inflow of
photons and bicarbonate we used a variant of the standard FBA where we mod-
ified the bounds in the corresponding exchange reactions to force a certain up-
take. To make the results interpretable we used unsupervised machine learning
to cluster and project the data points onto the 2D space. With a recent clustering
algorithm (McInnes et al. 2017) we could identify six main clusters that we in-
terpreted as typical phenotypes. This analysis, however, could not reveal aspects
related to the diurnal periodicity of Prochlorococcus’ metabolism that is dictated
by the availability of photons from sunlight. To capture this phenomenon, we both
rewired the representation of glycogen metabolism in the Prochlorococcus GEM
iSO595 to allow carbon storage and depletion, and we incorporated periodic en-
vironmental conditions and light absorption into COMETS (Dukovski et al. 2020,
Harcombe et al. 2014). These simulations provide novel hypothesis for how the
metabolic fluxes are reorganized in Prochlorococcus during the shift from photo-
synthesis and accumulation of glycogen during the day to depletion of the accu-
mulated glycogen during the afternoon and night. A qualitative comparison with
growth data of a closely related organism indicate that our simulations are in the
right ballpark, and that this framework will be useful in future research of pho-
totrophic organisms. One open question, that we now can, and should address is
what metabolic interactions that governs the mutual benefit in co-cultivations of
Prochlorococcus and heterotrophs (Roth-Rosenberg et al. 2020, Sher et al. 2011).

Although the work on alveolar macrophages is yet to be concluded I briefly sum-
marize the current conclusions here. First, unsteady-FBA seems to require fairly
large changes in intracellular metabolites levels over a short time span to signific-
antly constrain and, thereby improve, FBA predictions. The 2 hour resolution and
intracellular changes observed in the stimulated human alveolar macrophages did
not suffice. Therefore, TFA seems like a more appropriate method, and preliminary
results show that the different metabolite levels actually have an impact the calcu-
lated changes in Gibbs Free Energy and thus the likely direction of intracellular.
Another difficulty of this study is the lack of growth: the stimulated macrophages
perform cellular maintenance, but they don’t grow. We have currently modelled
this as simply a very low growth rate, similar to previous work (Bordbar et al.
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2017), but it is not cleat whether or not this is appropriate. Anyhow, it will be ex-
citing to dig further into these questions, and ultimately elucidate how stimulation
with different ligands affect the metabolism of these cells on a global level.

The diversity of GEM applications encountered during these last four years, com-
bined with the exposure to several research groups, have displayed the strengths
and weaknesses of the COBRA field. These strengths and weaknesses are not
readily grasped by scientists outside the field, and it is my impression that inad-
equate presentations of the scope and limitations of this field can result in distorted
expectations and challenging interdisciplinary collaborations. For example, it may
seem contradicting that metabolomics are not directly comparable with the output
from metabolic models. However, these interdisciplinary collaborations between
experimental and computational biologists are extremely valuable, in particular for
more applied research and with respect to the increased scope of GEMs towards
non-model species and microbial consortia. Successful interdisciplinary collab-
orations require a minimum understanding of the fundamental limitations and as-
sumptions associated with each methodology. Therefore, rather than downplaying
the assumptions and uncertainties associated with GEM predictions, these aspects
should be embraced and clearly represented. In Paper 1 we present the current
state of the COBRA field in terms of sources of uncertainty and approaches that
address this topic. This review is not meant to discredit the COBRA field. Rather,
we review this topic to facilitate further development of frameworks that can con-
solidate the trust in GEM research.
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Chapter 9

Outlook

The COBRA field has seen a massive development in scope during the last dec-
ades. One major reason for this success is, in my opinion, the ability of GEMs to
strike a good balance between usability and complexity. Although the framework
has clear limitations, in particular the lack of kinetic information and metabolite
concentrations, the literature demonstrate the applicability of this framework to a
diverse range of medical, biological and ecological questions. These limitations
are actually enabling the genome-scale of these metabolic models, in contrast to
adjacent fields such as kinetic and whole cell modelling which both are weighed
down by many, and often unknown, parameters (Saa and Nielsen 2017, Babtie and
Stumpf 2017).

The scope of the COBRA framework has recently been expanded with the develop-
ment of ME-models, which expand on the standard GEM formulation to account
for transcription and translation (Lloyd et al. 2018, Ebrahim et al. 2013). With
these models one can address new questions, e.g. how does reactive oxygen spe-
cies or acid stress affect the metabolism of E. coli (Du et al. 2019, Yang et al.
2019), but ME-models are not only computationally more costly, but they also
rely on parameters that are not readily available for non-model organisms. There
is actually in general a challenge in the COBRA field to develop and apply models
to study non-model species, not only because of the lack of species-specific know-
ledge, but also because of the significant amount of curation required to make
high-quality models. However, the latter concern is being addressed by a constant
development of novel model reconstruction softwares (Mendoza et al. 2019). As
we mention in Paper 1, we believe that these reconstruction softwares can improve
from a better representation of uncertainties, e.g. as an ensemble of models as in
Medusa (Medlock et al. 2020). The first concern might be addressed by improved
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tools and methods for assessing growth or knockout phenotypes for multiple spe-
cies across a wide range of environments (van Leeuwen et al. 2020, Kehe et al.
2019), that can be incorporated in novel automatic reconstruction pipelines.

With the rapid improvement and reduced cost of sequencing technology, it is likely
that omics integration and interpretation will become an even more important ap-
plication of GEMs. Recent methodological advances use large sets of transcrip-
tome data to infer transcriptional regulatory networks (Sastry et al. 2019). Com-
plete regulatory networks and GEM integration might be crucial to allow accurate
predictions for organisms such as S. coelicolor which features a complex life cycle
and regulatory mechanisms that convolute genotype-phenotype associations. An-
other interesting breakthrough is the impressive accuracy of AlphaFold 2 in pre-
dicting protein folding from the amino acid sequence 1. Protein structures can ex-
pand the scope of GEM applications (Brunk et al. 2016), and aid in the prediction
of kinetic coefficients (Heckmann et al. 2018) which are crucial for an extended
use of enzyme-constrained GEMs for none-model species. In total, these recent
developments create exciting opportunities for further use of GEMs and develop-
ment of the COBRA framework.

1https://doi.org/10.1038/d41586-020-03348-4
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Abstract

The reconstruction and analysis of genome-scale metabolic models constitutes a
powerful systems biology approach, with applications ranging from basic
understanding of genotype-phenotype mapping to solving biomedical and
environmental problems. However, the biological insight obtained from these
models is limited by multiple heterogeneous sources of uncertainty, which are
often difficult to quantify. Here we review the major sources of uncertainty and
survey existing approaches developed for representing and addressing them. A
unified formal characterization of these uncertainties through probabilistic
approaches and ensemble modeling will facilitate convergence towards consistent
reconstruction pipelines, improved data integration algorithms, and more accurate
assessment of predictive capacity.

Introduction
Genome-scale metabolic models (GEMs) aim to capture a systems-level representation

of the entirety of metabolic functions of a cell. They represent complex cellular meta-

bolic networks using a stoichiometric matrix, which enables sophisticated mathemat-

ical analysis of metabolism at the whole-cell level [1]. Not only do GEMs provide a

framework for mapping species-specific knowledge and complex ‘omics data to meta-

bolic networks, but coupled with constraint-based reconstruction and analysis

(COBRA) methods, such as Flux Balance Analysis (FBA), they facilitate the translation

of hypotheses into algorithms that can be used to generate testable predictions of

metabolic phenotypes [2–4]. These methods are now used to study biological systems

for many different applications, including in metabolic engineering, human metabolism

and biomedicine, and microbial ecology [5–11].

Over 100 well-curated GEMs exist for a range of prokaryotes and eukaryotes, offer-

ing an organized and mathematically tractable representation of these organisms’

metabolic networks [12, 13]. A detailed protocol has been described for the reconstruc-

tion of well-curated GEMs for new organisms [14]. Additionally, the increased

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
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availability of whole-genome sequencing in combination with the development of pipe-

lines for automatic model reconstruction has led to several frameworks that support

rapid model reconstruction for a large number of non-model organisms [15–19]. For

example, the US Department of Energy systems biology knowledgebase (KBase.us) cur-

rently enables the automatic generation of draft GEMs from over 80,000 sequenced ge-

nomes [20]. Thus, GEMs are rapidly becoming applicable for a wide range of biological

applications.

Despite the numerous reconstructions and wide range of applications, GEMs have

important limitations [21]. In this review, we focus on one major factor that currently

limits the successful application of GEMs: the inherent uncertainty in GEM predictions

that arises from degeneracy in both model structure (reconstruction) and simulation re-

sults (analysis). While GEM reconstructions typically only yield one specific metabolic

network as the final outcome, this one network is indeed one of many possible net-

works that could have been constructed through different choices of algorithms and

availability of information (Fig. 1). The process of GEM reconstruction is divided into

(1) genome annotation, (2) environment specification, (3) biomass formulation, and (4)

network gap-filling. Different choices in these first four steps can lead to reconstructed

networks with different structures (reactions and constraints). On top of these choices,

the final phenotypic prediction and biological interpretation is significantly affected by

(5) the choice of flux simulation method. This review moves through these five differ-

ent aspects of GEM reconstruction and analysis, outlining the key sources of uncer-

tainty in each. In addition, we review various approaches that have been developed to

deal with this uncertainty. We emphasize approaches that utilize probabilities or an en-

semble of models to represent uncertainty. A table associated with each section out-

lines the different approaches that have been summarized and the sources of

uncertainty that they address (Tables 1, 2, 3, 4 and 5).

Our ability to assess and communicate the sources of uncertainty associated with a

model can have great impact on the relevance of predictions and on the degree to

which these predictions can be constructively used for follow-up studies, as has been

noted for the field of systems biology in general [22]. This review is not an introduction

to genome-scale metabolic modeling or a survey of its applications, as these topics have

been covered elsewhere [5, 11, 23]. Rather, we hope that this text will serve as a road-

map facilitating the development of methods that further formalize a unified

characterization of uncertainty in GEM reconstruction and analysis.

Genome annotation
The first step towards a GEM reconstruction is the identification and functional anno-

tation of the genes encoding metabolic enzymes present in the genome (Table 1).

These annotations come from databases that employ homology-based methods for

mapping genome sequences to metabolic reactions. The use of these annotation data-

bases in GEM reconstruction pipelines in general is covered in several reviews [24–27].

It has been noted that the choice of a particular database significantly affects the struc-

ture of the reconstructed network [19]. This variability can be attributed to the limited

accuracy of homology-based methods [28], misannotations present in large databases

[29], the fact that many genes can only be annotated as hypothetical sequences of un-

known function [30, 31], and the high fraction of “orphan” enzyme functions that

Bernstein et al. Genome Biology           (2021) 22:64 Page 2 of 22



Fig. 1 (See legend on next page.)

Bernstein et al. Genome Biology           (2021) 22:64 Page 3 of 22



cannot be mapped to a particular genome sequence [32]. Some, but not all, of this vari-

ability can be mitigated by combining multiple databases to increase the coverage of

annotation when reconstructing a GEM [33, 34]. Furthermore, annotation for GEM re-

construction has an added layer of complexity beyond mapping genes to general ontol-

ogies or homologs. It is necessary to map genes to the metabolic reactions that they

enable. These mappings, referred to as gene-protein-reaction association rules, use

Boolean expressions to encode the nonlinear mapping between genes and reactions

(manifested in multimeric enzymes, multifunctional enzymes and isoenzymes). The re-

construction and interpretation of these rules adds additional uncertainty to the anno-

tation process. Even if a rule faithfully represents the functional possibilities encoded in

a set of genes, the cellular “interpretation” of the rule may be highly nuanced and com-

plex. For example, isoenzymes may not always compensate for each other’s deletion

due to different regulatory couplings [35], and alternative usage of the Boolean relation-

ship may best capture the cost of a gene deletion and its degree of evolutionary conser-

vation [36]. An innovative approach for representing gene-protein-reaction association

rules is to encode them into the stoichiometric matrix of the GEM [37]. This encoding

makes it possible to extend flux sampling approaches to gene sampling, facilitating the

quantification of uncertainty. These sampling approaches are discussed further in the

flux simulation section.

A few reconstruction pipelines try to circumvent the problem of incorrect or missing

functional annotation by using previously curated GEMs as annotation templates.

Using several different reconstruction pipelines—RAVEN [38, 39], AuReMe/Panto-

graph [40, 41], or MetaDraft [42]—the user can map annotations from one organism

directly to a curated model of a closely related organism by employing homology

searches between the two. In this way, well-curated metabolic reaction annotations

from an established GEM are propagated to new GEM reconstructions. Another recon-

struction pipeline, CarveMe, uses a curated network of all possible reactions, based on

the BiGG database [13], as the reference and “carves out” a subset of reactions to create

organism-specific models [43]. While these methods may provide more complete re-

constructions that require less gap-filling, they do not solve the fundamental issue of

the uncertainty in the mapping of homologs or provide an estimate of the uncertainty

associated with the presence of each reaction in the network.

Another approach is to directly incorporate uncertainty in functional annotation by

assigning several likely annotations to each gene rather than picking the single most

likely. In one likelihood-based approach, metabolic reactions are annotated probabilis-

tically by taking into account the overall homology score, BLAST e-value, and keeping

track of suboptimal annotations [44]. In this approach, metabolic reactions are assigned

a probability of being present in a GEM based on both the strength and the uniqueness

of the annotation. This approach has been developed into the ProbAnnoPy and

(See figure on previous page.)
Fig. 1 A general progression for genome-scale metabolic model reconstruction and analysis is represented by
five major steps. The central black arrows demonstrate a standard approach, which yields a single output from
each step. The gray arrows represent the uncertainty in this process, with the output of each step as an
ensemble of possible results. The new additions to the model at each step are shown in red: circles represent
metabolites, stars represent biomass components, arrows represent metabolic reactions, and bold arrows
represent a specific flux distribution
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ProbAnnoWeb pipelines that provide probabilistic annotations in the ModelSEED

framework [45]. Beyond using only homology from BLAST to inform annotation prob-

abilities, the CoReCo algorithm has additionally included homology scores based on

global trace graphs, which have been proposed as an improved approach for identifying

distant homologs [46]. The CoReCo algorithm also utilizes phylogenetic information to

improve the probabilistic annotation of GEMs for multiple organisms simultaneously.

Additional context information has also been incorporated into a probabilistic meta-

bolic reaction annotation approach in the GLOBUS algorithm [47]. Context-based in-

formation includes gene correlations from transcriptomics, co-localization of genes on

the chromosome and phylogenetic profiles, all of which are complementary to gene-

sequence homology for inferring functional protein annotations. The probabilistic

metabolic reaction annotations generated with these methods serve as a good starting

point for subsequent reconstruction steps. For example, the likelihood-based approach

mentioned here is used to implement a probabilistic gap-filling algorithm, further dis-

cussed in the gap-filling section [44].

Other concepts that have been used to generally improve gene functional annotation

could be further incorporated into GEM annotation pipelines. For example, functional

annotation of enzymes could be improved by the incorporation of enzyme active/cata-

lytic site information from databases such as M-CSA [48]. Additionally, the annotation

of specific classes of proteins, such as biosynthetic gene clusters [49, 50], transporters

[51, 52], and amino acid biosynthetic pathways [53], can be improved by using ap-

proaches tailored to identify features that are specific to those protein classes. In par-

ticular, transport reactions are difficult to properly annotate and can add significant

uncertainty to GEMs [14]. For example, the substrate specificity of automatically anno-

tated transport reactions can often be improved with experimental data [54]. Further-

more, incorrect transport reactions can cause ATP generating cycles that lead to

inaccuracies in GEM predictions [55]. Beyond traditional annotation approaches, ma-

chine learning has also been used to improve enzyme annotation by predicting EC

numbers directly from gene sequences, potentially picking up on subtle features that

would otherwise be missed by homology-matching-based approaches [56]. The

localization of reactions to specific compartments is an added layer of annotation that

is important for accurate GEM reconstruction, especially of eukaryotes [57, 58]. Also in

this case, machine learning approaches can be used to predict the specific subcellular

localization of proteins [59, 60]. New high-throughput genomics experimental methods

can also be used to simultaneously assess the function of many genes in a large number

of environments [54, 61]. Incorporating novel ideas from these methods into GEM re-

constructions may reduce the overall uncertainty of functional annotation.

Environment specification
To use a GEM for the prediction of expected phenotypes, or for the simulation of dy-

namic processes, one must define the chemical composition of the environment (Table

2). Establishing the list of environmentally available molecules is straightforward in

simple laboratory experiments, in which defined media with known chemical compos-

ition are used. In this context, databases such as Media DB [62] or KOMODO [63]

have cataloged a large number of defined media, greatly facilitating metabolic modeling.

Many laboratory experiments, however, are performed in undefined media containing
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ingredients such as “yeast extract” that cannot be easily listed and quantified. In nature,

microbes often exist in highly complex environments where the chemical inputs to the

system are undefined, vary with time, and are altered by other microbes in the environ-

ment. Furthermore, it is not sufficient to know the list of compounds present in the

cultivation medium, but one must also know at what rates the compounds can be con-

sumed by the organism to properly set the bounds on the uptake reactions of the meta-

bolic model. In principle, the composition of the environment can be determined

through experimental techniques such as exo-metabolomics, where measurements of

metabolites in the extracellular environment are used to infer cellular uptake and secre-

tion rates [64–68]. This approach can provide valuable information for reducing the

uncertainty in the environment specification. However, this data comes with its

own uncertainty that should be carefully addressed [69]. All of these factors lead

to a wide range of uncertainty arising in environment specification for metabolic

network analysis [70].

GEMs provide an opportunity to address the uncertainty associated with complex en-

vironments. GEM analysis algorithms, such as FBA, are computationally efficient and

can thus be run across a large ensemble of environments to quantify the sensitivity of

simulated fluxes to nutrient composition. Several studies have quantified this sensitivity

by identifying aspects of GEM predictions that are either strongly affected by or robust

to variation in the environmental composition [71–77]. Describing this sensitivity, or

robustness, provides a clearer picture of how uncertainty in the environment specifica-

tion may, or may not, propagate to specific GEM predictions. Early on, phenotype

phase plane analysis was developed to show the impact on optimal growth rate of vary-

ing the fluxes of two limiting resources [71, 72]. Moving beyond pairs of resources,

large ensembles of nutrients can be randomly sampled to assess the variability of all

intracellular fluxes. For example, Almaas et al. showed, using a well-curated Escherichia

coli GEM, that the overall distribution of metabolic fluxes is robust to the environmen-

tal composition; however, specific fluxes vary, with most discrete variations occurring

in a connected “high-flux backbone” of reactions [73]. Subsequent work highlighted the

evolutionary importance of an active core of reactions that carry flux in all environ-

ments [74]. Reed and Palsson further demonstrated that reactions with correlated

fluxes across environments are indicative of transcriptional regulatory structure [75].

These studies point to the non-trivial nature of the sensitivity of GEM predictions to

Table 1 Summary of approaches that address sources of uncertainty in genome annotation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Comparison of pipelines Variability across databases [19]

Combining databases Variability across databases [33, 34]

Template GEMs Incomplete annotations in non-model
organisms

[38–43]

Probabilistic annotation Annotation errors [44, 45]

Probabilistic annotation + context
Information

Annotation errors [46, 47]

Specific databases and high-throughput
genomics

Annotation errors [48–54, 56, 59–
61]
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environment specification. Beyond the context of individual organisms, GEM analysis

has been used to demonstrate that varying the environment can alter the nature of

metabolic interactions between microbial organisms [78] and that certain environmen-

tal variables, such as the presence of oxygen, can have a significant impact on the inter-

action types that arise [79]. Variable environments can impact cellular metabolism

from individual reaction fluxes up to the level of microbial interactions. Thus, in appli-

cations where the environment is uncertain, ensemble or probabilistic approaches are

needed to fully capture potential phenotypes.

A more recent approach, inspired by the statistical physics concept of network perco-

lation, utilizes random sampling of nutrient compositions to quantify which metabolites

can be consistently produced by a given metabolic network across many environments

[80]. This approach introduced a probabilistic framework for representing the input

metabolites of a metabolic network, which could further facilitate random sampling of

environmental ensembles in future methods. While the current implementation of this

framework samples all environmental metabolites with equal probability, one could en-

visage future approaches which represent environmental uncertainties more accurately

by using biased distributions that incorporate any available knowledge. This approach

would fill the existing gap between assuming a single known environment and ran-

domly sampling environments uniformly. Additionally, environment sampling could be

used to vary the flux (in FBA) or concentrations (in dynamic FBA) of different environ-

mental components, in addition to their presence and absence, to assess the impact of

these quantities on metabolic network properties.

The specification of the environment for GEM analysis could be further improved

using “reverse ecology” methods that aim to infer the native environment from the

metabolic network structure either through constraint-based optimization [81–83] or

by defining “seed” metabolites that are needed as inputs for a metabolic network and

are therefore more likely to be found in that organism’s natural environment [84, 85].

Since these methods utilize the metabolic network structure to inform the environment

specification, they should be applied carefully as uncertainty in the network may propa-

gate into environment specification.

Biomass formulation
The cell biomass used in GEMs is an inventory list of all compounds essential for

growth of a given organism, weighted to represent the amount of each component

present in 1 g of dry-weight biomass. The reaction that transforms all biomass compo-

nents into a unit of biomass is used to represent growth in GEMs and is necessary to

Table 2 Summary of approaches that address sources of uncertainty in environment specification.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Media databases Inconsistent media definition [62, 63]

Experimental determination Undefined environment composition [64–68]

Phenotype phase plane Variable environment composition [71, 72]

Ensemble sampling Variable environment composition [73–79]

Probabilistic sampling Variable environment composition [80]

Reverse ecology Undefined environment composition [81–85]
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perform popular analyses such as FBA. Since several aspects of the biomass reaction

and its use have been reviewed before [86], we will focus on the uncertainty associated

with its formulation (Table 3).

The main source of uncertainty in the formulation of biomass composition is the lack

of direct experimental measurements for most organisms. In the absence of specific

data, the biomass composition from a model organism (e.g., E. coli for Gram-negative

or Bacillus subtilis for Gram-positive bacteria) is often used as template, despite the

significant uncharacterized variation in biomass composition likely to exist across dif-

ferent organisms. This trend has been verified by hierarchical clustering of biomass

compositions from 71 curated GEMs: rather than taxonomic relations, the clusters

were defined by the template biomass functions used in the model reconstruction [87].

Similarly, in a survey of plants, the biomass was only experimentally determined in 5 of

21 GEMs [88]. Furthermore, even within the same organism, the biomass composition

can change in response to changes in growth rate, nutrient availability, temperature,

and osmotic stress [89–95].

A number of studies have addressed the sensitivity of model predictions to changes

in biomass formulation. Because these studies differ both in how the biomass function

is changed and which model predictions are evaluated, they reach different conclusions.

Initially, Pramanik and Keasling used correlations between growth rate and macromol-

ecular abundances to estimate growth-rate-specific biomass compositions in E. coli [96,

97]. When the high growth-rate biomass composition was used to simulate fluxes in a

low growth-rate environment, or vice versa, the total deviation from measured fluxes

increased drastically compared to simulations with correct biomass specification [96].

Secondly, they showed that the predicted fluxes were sensitive to quantitative changes

in the fatty acid composition of the biomass [97]. More recent analyses of the effect of

changing the biomass composition in Saccharomyces cerevisiae have shown large influ-

ence on gene knock-out growth predictions [98], variable effect on substrate uptake

rates [99], and an effect on the flux distribution dependent on the identity of the limit-

ing nutrient [100]. In contrast, little effect was found on the predicted growth yield in

Pseudomonas putida [101]. To address the dependence of the biomass formulation on

the environment, within an individual organism, Schulz et al. propose two concepts for

the incorporation of, or interpolation between, multiple biomass functions correspond-

ing to different growth environments [102]. The first concept allows the GEM to

choose an optimal linear combination of existing biomass functions while the second

concept uses a hyperplane interpolation to predict the correct biomass function for the

selected growth environment. The authors use hypothetical biomass functions to show

that the choice of method has a clear impact on model predictions, but further evalu-

ation calls for experimental follow-up. Swapping the biomass between different organ-

isms can provide insight into the sensitivity of GEMS to strain specific biomass

formulations, which is an important consideration given the widespread use of template

biomass formulations. Leveraging three independent reconstructions of Arabidopsis

thaliana with substantially different biomass reactions, it was found that the fluxes in

central carbon metabolism were robust to replacement of the biomass reaction from

one of the other models [88]. In contrast, swapping biomass reactions between five dif-

ferent bacterial species resulted in up to 30% change in predicted essential reactions

[87].
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Although the effect of uncertainty and error in the biomass coefficients depends on a

large number of variables and how the effect is measured, it is clear that GEMs would

benefit from increased precision in the estimation of biomass coefficients, which would

ideally be organism and condition specific. The need for accurate estimates of the bio-

mass composition has recently been addressed by experimental protocols [103–105]

and the software BOFdat [106]. BOFdat provides a pipeline for computation of biomass

coefficients and reports that the macromolecular composition is the most important

factor in determining stoichiometric coefficients and should therefore be prioritized

above ‘omics datasets. One elegant feature of BOFdat is a genetic algorithm which sam-

ples ensembles of biomass formulations to identify carbohydrate and small-molecule

compositions such that model simulations optimally correspond with knock-out

phenotype data. Looking forward, approaches such as BOFdat could be used to repre-

sent uncertainty in the biomass composition by sampling from an ensemble of possible

biomass equations. Likewise, uncertainty in the stoichiometry of each biomass compo-

nent could be incorporated by probabilistically sampling each coefficient from an ap-

propriate distribution. Experimental data could be incorporated into this process to

guide and constrain the distributions that are sampled through a Bayesian approach.

Network gap-filling
Gap-filling is an important step in GEM reconstruction that transforms a draft network

into one that can produce biomass in the specified environment (Table 4). The idea of

gap-filling—that missing knowledge in metabolism may require algorithms to identify

reactions absent in the representation of a specific pathway, but likely present in the or-

ganism—has been around since the early days of metabolic network modeling [107].

Gap-filling algorithms in general have been reviewed previously [108], but in brief, they

utilize a universal database of possible reactions to augment an existing metabolic net-

work with the goal of enabling feasible growth states, e.g., by connecting dead-end me-

tabolites. Here we focus on the uncertainty associated with this process. Gap-filling is

inherently uncertain because the reactions added are generally not supported by gen-

omic evidence. Moreover, multiple solutions can often be found to satisfy the same

gap-filling problem. Due to this uncertainty, basic gap-filling algorithms are known to

be somewhat inaccurate [109], prompting recent benchmarking on randomly degraded

metabolic networks to highlight the variability in gap-filling performance [110]. Fur-

thermore, many GEMs contain significant inconsistencies even after the application of

gap-filling approaches, and their identification is important for ensuring model fidelity

[111].

Table 3 Summary of approaches that address sources of uncertainty in biomass formulation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Alternative biomass formulations Variability in biomass within organisms [96–101]

Environment-dependent biomass formulation Variability in biomass within organisms [102]

Cross-organism biomass comparison Biomass differences across organisms [87, 88]

Experimental determination Undefined biomass composition [103–105]

Ensemble sampling Undefined biomass composition [106]
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The uncertainty in gap-filling solutions has prompted the development of various prob-

abilistic approaches to integrate data and prioritize solutions. An early innovation in prob-

abilistic gap-filling algorithms was the development of a method to evaluate the addition

of reactions to fill gaps based on a Bayesian network including sequence homology, op-

eron, and pathway-based information [112]. A similar approach is to use probabilistic

weights during the gap-filling process, such that more probable reactions incur a smaller

penalty when added to the metabolic network. The CROP algorithm is an example of

gap-filling based on growth phenotype data that implements weights based on various

sources of evidence, including manually curated experimental evidence, pathways known

to be associated with an organism, thermodynamics, and probabilistic estimates of en-

zyme function [113]. Another probabilistic approach has been developed to translate se-

quence homology into the likelihood that a metabolic reaction is present in a given

metabolic network (discussed in the “Genome annotation” section); these likelihoods can

then be used as probabilistic weights during the gap-filling procedure [44, 45].

Beyond probabilistic gap-filling methods, ensemble approaches have been developed

to represent the uncertainty in gap-filling solutions as an ensemble of possible gap-

filled GEMs. An early approach in this area prunes a universal metabolic network to

identify locally minimal gap-filling solutions that align with experimental data [114]. In

this approach, an ensemble of metabolic networks is generated by randomly assigning

the order in which reactions are pruned from an original universal metabolic network.

A similar pruning-based ensemble method, MIRAGE, additionally includes gene ex-

pression and phylogeny when weighting the order in which to remove reactions [115].

The idea of ensemble gap-filling was more fully developed by an approach that utilizes

growth phenotype data in a randomized order to generate an ensemble of gap-filling

solutions [116]. By randomly changing the sequence in which growth phenotype data

was presented to the gap-filling algorithm, Biggs and Papin generated an ensemble of

metabolic networks that equally agree with the given data. This study further demon-

strated that utilizing the ensemble gap-filling result can be more accurate than using

the individual results, or a global simultaneously gap-filled result. An additional ensem-

ble gap-filling approach is implemented in the CarveMe method. CarveMe generates

ensembles of gap-filled models by assigning random weights to reactions without gen-

omic evidence [43].

Finally, automated gap-filling methods are fundamentally limited by the underlying

database(s) of metabolic reactions that they utilize [117, 118]. Thus, uncertainty in this

database set can have a large impact on gap-filling performance. This is a major limita-

tion when considering the complexity of the true metabolic universe and the fact that

we likely do not know the proper annotations for all metabolic reactions. In light of this

limitation, a number of methods have been developed to predict possible metabolic re-

actions based on general reaction rules. Many of these approaches have been reviewed

previously in the context of predicting biosynthetic pathways for target compounds [25,

119, 120]. One of the earlier approaches, the BNICE framework, expands the metabolic

universe by learning generic reaction rules from the KEGG reactome [121]. This frame-

work was subsequently used to develop MINE and ATLAS, databases of theoretically

possible compounds and enzymatic reactions, respectively [122–124]. BNICE also sug-

gests three-level EC-numbers for hypothetical reactions, which can guide discovery of

proteins associated with de novo reactions. The theoretical number of reactions in the
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expanded ATLAS is more than 10-fold higher than the number of reactions in KEGG,

indicating that a large number of unexpected chemical transformations may be in-

volved in metabolism. As we grapple with uncertainty in metabolic network reconstruc-

tion, de novo methods such as these can help us address unknown unknowns and

provide exciting unanticipated insights. Moving forward, a combination of probabilistic

and ensemble methods for data integration and de novo reaction prediction will enable

the generation of gap-filled metabolic networks that represent uncertainty and can be

better used to guide model refinement.

Flux simulation
One of the most common and powerful uses of GEMs is the prediction of metabolic

phenotypes at steady state through the computation of expected fluxes through each

reaction. Because the rank of the stoichiometric matrix is almost always less than the

number of reactions, the linear system of equations associated with steady state is, in

general, underdetermined. Thus, there are an infinite number of solutions within the

multidimensional solution space (a space where each dimension corresponds to the flux

of a metabolic reaction) [125]. Any point within the solution space is a feasible solution

representing a metabolic phenotype. While there often is an emphasis on identifying

the correct solution in this solution space (i.e., an individual point closest to the out-

come of experimental measurements), choices and uncertainty in some of the above as-

pects of the computation necessarily lead to uncertainty in the prediction of the fluxes

themselves. In this section, we will review prior work addressing this uncertainty, with

an emphasis on methods geared towards embracing and reporting it (Table 5).

The flagship method for simulating metabolic fluxes in GEMs, FBA, uses linear pro-

gramming to identify a point (or a subspace) in the solution space that optimizes a pre-

defined cellular objective [23, 126–129]. Quite often, this objective is chosen to be the

maximization of biomass production. A fundamental question that has surrounded the

FBA approach since its early days is whether and under what conditions the assump-

tion that biological systems operate close to a predictable optimum is valid, and if so,

which objective function best represents the metabolic goals of a cell. Several studies

have explored this uncertainty associated with the choice of the objective function.

Schuetz et al. show that intracellular fluxes can be accurately predicted using FBA and

an appropriate cellular objective [130]. However, none of the 11 selected objectives

could provide the best predictability across different conditions when comparing pre-

dicted fluxes with 13C flux experiments in E. coli. It was early on demonstrated that

FBA with maximization of growth rate could predict the phenotype of E. coli wild-type

strains, supporting the assumption that unicellular organisms have evolved towards

Table 4 Summary of approaches that address sources of uncertainty in network gap-filling. While
all gap-filling approaches address uncertainty arising from missing annotations, here we point out
approaches that address uncertainty in the gap-filling solutions. Highlighted in bold are key
approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Evaluating gap-filling accuracy Degenerate solutions [109, 110]

Probabilistic gap-filling Degenerate solutions [44, 45, 112, 113]

Ensemble gap-filling Degenerate solutions [43, 114–116]

De novo reaction prediction Reaction database incompleteness [121–124]
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maximal growth [131]. Indeed, by minimizing the deviation from measured fluxes in

yeast, maximization of growth rate was identified as the most likely objective in

glucose-limited conditions [132]. Taking an inverse FBA approach, Zhao et al. pre-

dicted the objective function for E. coli strains evolved through 50,000 generations

[133]. Although they identified an infinite number of objective functions that could de-

scribe the measured flux ratios, maximization of biomass alone was not one of these

objectives [134]. A different study of these E. coli strains also provided nuance to our

understanding of evolutionary pressures by confirming that E. coli evolves towards

maximization of growth rate primarily by increasing substrate usage, but only if the an-

cestral strain is initially far from the optimum [135].

In a number of instances, the phenotypes of knock-out mutants are actually more ac-

curately predicted when taking into account suboptimal solutions (near but not exactly

on the FBA predicted optimum). For example, the increased accuracy of the MOMA

and related methods stems from the assumption that a knock-out strain is still steered

towards the wild-type optimum by the cellular regulatory network and may not neces-

sarily approach the knock-out optimum [136]. The PSEUDO method can further im-

prove the accuracy of knock-out flux predictions by assuming that the knock-out flux

is closest to a degenerate space of suboptimal solutions near the wild-type optimum,

representing regulatory variability around the wild-type solution [137]. The optimality

of solutions has been further investigated in a study leveraging 13C-measurements of 9

different bacteria, which found that metabolism operates close to a Pareto surface that

balances the trade-off between maximization of growth and ability to adapt to changing

conditions [138]. In summary, these results suggest that suboptimality may provide in-

creased robustness to stochastic variation and perturbation, a property with known im-

portance in biological systems [139, 140].

To avoid biased assumptions of the metabolic goal of a microorganism, one can

characterize the complete solution space to describe all possible phenotypes satisfying

the steady-state and flux constraints. It is important to note that, even at the optimum

predicted by FBA, the solution is rarely unique. The predicted flux vector must there-

fore be analyzed with caution. Flux variability analysis (FVA) can be used to estimate

the range of possible fluxes at the optimum [141], but since the range of each reaction

is estimated independently, the method provides no information on the correlations be-

tween fluxes. More sophisticated methods include enumeration of alternative optima

[142–145], or a full description of the solution space through flux coupling [146], ex-

treme pathway analysis [147], elementary flux modes (EFMs) [148], and elementary flux

vectors (EFVs) [149]. EFMs decompose the steady-state solution space into characteris-

tic support minimal vectors, while EFVs have the added benefit of incorporating flux

bounds to further constrain the space to a polyhedron. Although these methods pro-

vide an unbiased framework for identifying metabolic pathways, a representation of the

entire solution space is generally intractable for genome-scale models because of the

non-polynomial scaling with the number of reactions [150].

Random sampling provides a scalable approach to describe possible phenotypes in

the solution space. Monte-Carlo-based algorithms [151–153] have proven useful for a

large number of applications [154], from a general description of the distribution of

metabolic fluxes [73, 155, 156] to transcriptional regulation of key enzymes [157] or

comparison of bacterial strains [158]. However, verification of convergence is a key
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quality control of random sampling results currently lacking in analysis of GEMs [159].

The computational time required to reach convergence is a practical issue for large

models, but recent work shows that the sampling results can be estimated at a reduced

cost by using analytical methods and Bayesian inference [160]. Random sampling of the

flux space can also be probabilistically biased to better represent uncertainty. A recent

concept estimates the probability distribution of flux states that maximizes entropy

with an average growth rate equal to the experimental value [161, 162]. As stated in the

principle of maximum entropy, this probability distribution is the best representation

of available knowledge [163, 164]. Another recently developed approach, Bayesian FBA,

can be used to sample metabolic fluxes from a truncated multivariate normal distribu-

tion with prior distribution centered around zero [165]. In Bayesian FBA, prior know-

ledge such as measured growth and uptake rates, or 13C - flux data, can be elegantly

incorporated in calculations of posterior flux distributions in a generic Bayesian frame-

work that provides insight into the uncertainty associated with individual fluxes and

flux couplings.

The uncertainty in model predictions can be reduced by introduction of additional

constraints which reduce the size of the solution space [3, 125]. The most common

constraints are those associated with limits on nutrient uptake (as defined by the envir-

onment composition), thermodynamic irreversibility, and the presence of specific reac-

tions, such as the growth and non-growth associated maintenance [166, 167]. However,

these constraints have their own associated uncertainties. Uncertainty in growth and

non-growth associated maintenance derives both from the experimental growth data

used to estimate these values [14], and variability in the maintenance cost of cellular

processes in different environments and organisms [168]. The impact of this uncer-

tainty on GEM predictions has only been briefly touched upon [169, 170]. Taking into

account thermodynamic constraints on metabolic reaction fluxes is a powerful ap-

proach to improve model predictions, both by identifying subnetworks violating the

second law of thermodynamics and to infer the direction of metabolic reactions from

the calculated change in Gibbs free energy [55, 171–174]. However, the calculation of

Gibbs free energy for the large number of reactions present in GEMs requires approxi-

mate approaches, such as the group contribution method [175, 176].

Another branch of methods uses either transcriptome [177] or proteome [178, 179]

data to constrain reaction fluxes according to the abundance of proteins catalyzing the

respective metabolic reactions. While transcriptomics data have the benefit of increased

coverage of genes compared to proteomics (e.g., covers 60% of the enzymes in the

yeast-GEM) [178], the transcript levels do not necessarily correlate with enzyme abun-

dance [180, 181]. This may explain why Parsimonious enzyme usage FBA (pFBA),

which minimizes the total sum of the absolute values of fluxes [182], in general outper-

formed seven different transcriptome-based methods in predicting intracellular fluxes

for both S. cerevisiae and E. coli across three different conditions [177]. An additional

advantage of pFBA is that it does not require additional parameters, unlike the afore-

mentioned transcriptomics/proteomics approaches, which may require a large number

of parameters to properly integrate the data. Similar to pFBA, several other methods

use global constraints to improve model predictions. Of particular interest are Con-

strained Allocation Flux Balance Analysis (CAFBA) [183] which takes the growth-

dependent ribosome allocation into account, the global constraint of dissipation of
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Gibbs free energy [184], and the extension of pFBA to include reaction likelihoods

[185]. In any of these methods, particularly those that use additional data and parame-

ters, it is important to remember that additional data used to further constrain the flux

space comes with its own associated uncertainty, which must be taken into account

when integrating it into GEMs.

The steady-state assumption forms the basis of constraint-based analysis by requiring

mass-balance of all intracellular metabolites and defines the solution space discussed

throughout this section. This assumption is justified because transient changes in me-

tabolite concentrations occur rapidly compared to environmental and regulatory per-

turbations, leading to rapid convergence to a quasi-steady-state where metabolite

concentrations are constant [186, 187]. However, when considering the uncertainty in

stoichiometric coefficients, particularly in the biomass function, the steady-state as-

sumption is effectively relaxed [165, 188, 189]. The RAMP approach demonstrates that

relaxing the steady-state assumption can lead to more accurate predictions of intracel-

lular fluxes [189]. The RAMP solution converges to the FBA solution when the uncer-

tainty in stoichiometric coefficients approaches zero, demonstrating that this is a more

general approach. While only uncertainty in the coefficients of the biomass reaction is

explicitly tested in this work, RAMP’s general framework is not limited to this case and

can include uncertainty in reaction bounds or uncertainty in coefficients associated

with protein allocation or thermodynamics.

Discussion
In this review, we highlighted methods that use probabilistic approaches and ensemble

modeling to represent the uncertainty associated with constraint-based reconstruction

and analysis of GEMs. Formalizing the representation of uncertainty in GEMs would

improve confidence in modeling results. Although we concede that this is a difficult

task, we hope that this review will serve as a roadmap for how this issue can be further

addressed. We maintain that ensemble approaches (which are in essence discrete repre-

sentations of probability distributions) provide a strong framework that naturally cap-

tures the uncertainty arising from the many possible outcomes in each step of the

reconstruction and flux analysis process (Fig. 1). A practical step moving forward is the

development of a unified metabolic network reconstruction and analysis framework

that provides a probabilistic ensemble of results. Such a framework would require fur-

ther development of methods for the representation and analysis of GEM ensembles,

Table 5 Summary of approaches that address sources of uncertainty in flux simulation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Alternative objective functions Undefined cellular objective [130–132, 134, 135]

Suboptimal solutions Undefined cellular objective [136–138]

Characterization of optimal solutions Degenerate otimal solutions [141–145]

Characterization of steady-state solution space Degenerate solution space [146–149]

Random sampling Degenerate solution space [151–160]

Random sampling with probabilistic biases Degenerate solution space [161, 162, 165]

Added constraints Degenerate solution space [55, 168–174, 177–179, 182–185]

Relaxed steady-state assumption Steady-state assumption [188, 189]
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such as the MEDUSA package [190], and continued development and integration of ap-

proaches that represent uncertainty encountered in each stage of the GEM reconstruc-

tion and analysis process. In future development of ensemble models of GEMs, one

should keep in mind that this approach is not a panacea [191]. It will be important to

accurately account for uncertainty in each step to avoid potential pitfalls, such as an in-

crease in false positive predictions given the sparse nature of the stoichiometric matrix.

For example, when incorporating de novo predicted reactions into network gap-filling

algorithms, the probabilistic weighting of these reactions would need to be carefully

tuned. Additionally, it will be important to further explore correlations between the re-

sults of the different steps in the reconstruction and analysis process to fully under-

stand uncertainty in this framework. For example, probabilistic genome annotation and

ensemble gap-filling can work synergistically to identify candidate genes for orphan

metabolic reactions. Conversely, uncertainty in metabolic network structure could be

propagated through methods that use the network structure to infer the biomass for-

mulation (such as BOFdat) or environment specification (such as reverse ecology). It is

also important to focus on understanding the sensitivity of modeling results to uncer-

tainty in specific parameters or steps in the pipeline. Generating an ensemble of results

can provide insight into which results are robust to uncertainty in different parameters

or model choices. Furthermore, clustering and classifying ensembles of results with ma-

chine learning algorithms can provide insight into which areas of genome-scale model-

ing are particularly sensitive and should be targeted for uncertainty reduction [192].

Ultimately, capturing all of the uncertainty in GEM reconstruction and analysis in

a single pipeline will be a difficult task, and an emphasis should be placed on

transparency and reproducibility such that all of the assumptions employed by a

particular approach can be easily accounted for [193]. The standardization of

model quality control provided by MEMOTE is an important contribution in this

direction [194]. A similar community-effort towards standardized assessment and

reporting of GEM uncertainties, as has been recently suggested by Carey et al.,

would be similarly highly beneficial [195].

Multiomics data integration is an increasingly important application of GEMS as bio-

logical studies are now collecting and analyzing multiple sources of high-throughput

data. GEMs can facilitate the integration of this data in a knowledge-based format that

provides mechanistic insight [20, 196]. Approaches and challenges in integrating ‘omics

data into GEMs have been reviewed previously, with a particular focus on the difficulty

of precise data integration due to GEMs’ lack of kinetic information [197]. It is import-

ant to consider how best to represent ‘omics data such that they can be integrated into

GEMs. In line with the main message of our review, Ramon et al. suggest that a Bayes-

ian perspective can aid the integration of ‘omics data by taking into account the uncer-

tainty in the metabolic network and experimental observations [197]. In this context,

‘omics data can be used to constrain both the prior and posterior distributions from

which ensembles of GEMs are sampled. Furthermore, GEMs can be used to simulate

disparate types of ‘omics data, even though the explicit calculation of likelihoods may

be intractable. Thus, the use of “simulation-based” Bayesian inference approaches is a

promising route for informing GEM structure and parameters from data [198]. How-

ever, scaling Bayesian approaches up to deal with the large space of possible GEM re-

constructions is an open, exciting and challenging research direction.
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While this review has been entirely focused on uncertainty in GEM approaches, it is

also important to remember that future efforts will need to creatively address major

open questions on how to integrate metabolic models with other layers of biological

complexity and their associated uncertainties. Several methods have been proposed to

extend the basis of GEMs to include some other layers, such as metabolism and expres-

sion (ME) models that incorporate the processes of gene transcription and translation

[199] or dynamic FBA that can simulate time courses of metabolic processes such as

microbial growth curves [186, 200, 201], and can be extended to include multiple or-

ganisms and spatial structure [202–206]. Moving beyond the steady-state assumption,

approaches based on kinetic models of metabolism can predict the concentrations of

metabolites and fluxes through individual pathways. Although these models require a

large number of kinetic parameters, beyond those required by GEMs, several methods

exist for inferring these parameters and representing their uncertainty [207–209]. Fi-

nally, whole-cell modeling can be used to simultaneously model multiple processes in

the cell and gain comprehensive insight into cellular physiology [210, 211]. However,

considerable uncertainty in the many parameters required for kinetic and whole-cell

modeling continues to limit their broad application [212, 213]. Thus, as new modeling

approaches arise, it is likely that genome-scale metabolic modeling, which strikes a pro-

ductive balance between scalability and scope with many successful applications [5–

11], will continue to play a key role in the landscape of mechanistic modeling of bio-

logical systems. Further embracing uncertainty in this field is an exciting opportunity

to continue to improve the application of this modeling framework.
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Predicting Strain Engineering Strategies Using iKS1317:
A Genome-Scale Metabolic Model of Streptomyces
coelicolor

Tja�sa Kumelj, Snorre Sulheim, Alexander Wentzel, and Eivind Almaas*

Streptomyces coelicolor is a model organism for the Actinobacteria, a phylum
known to produce an extensive range of different bioactive compounds that
include antibiotics currently used in the clinic. Biosynthetic gene clusters
discovered in genomes of other Actinobacteria can be transferred to and
expressed in S. coelicolor, making it a factory for heterologous production of
secondary metabolites. Genome-scale metabolic reconstructions have suc-
cessfully been used in several biotechnology applications to facilitate the
over-production of target metabolites. Here, the authors present iKS1317, the
most comprehensive and accurate reconstructed genome-scale metabolic
model (GEM) for S. coelicolor. The model reconstruction is based on previous
models, publicly available databases, and published literature and includes
1317 genes, 2119 reactions, and 1581 metabolites. It correctly predicts wild-
type growth in 96.5% of the evaluated growth environments and gene
knockout predictions in 78.4% when comparing with observed mutant
growth phenotypes, with a total accuracy of 83.3%. However, using a
minimal nutrient environment for the gene knockout predictions, iKS1317
has an accuracy of 87.1% in predicting mutant growth phenotypes.
Furthermore, we used iKS1317 and existing strain design algorithms to
suggest robust gene-knockout strategies to increase the production of acetyl-
CoA. Since acetyl-CoA is the most important precursor for polyketide
antibiotics, the suggested strategies may be implemented in vivo to improve
the function of S. coelicolor as a heterologous expression host.

1. Introduction

The increasing resistance of pathogenic bacteria to antibiotics
combinedwitha continuous low level of discovery anddevelopment

of new antibacterial drugs is amajor threat to
global health.One reason for the lack of novel
drugs is that the traditional method of
bioprospecting, involving cultivation and
high-throughput screening, is no longer
efficient, partly because of a high rate of
rediscovery.[1–3] A promising approach for
discovery and production of novel bioactive
metabolites is based on the heterologous
expression of biosynthetic gene clusters in
specialized expression host strains. One
organism in which this already has been
achieved is Streptomyces coelicolor.[4–8]

The genusStreptomyces is one of themost
important sources of bioactive, microbial
metabolites.S. coelicolor is amodelorganism
for this genus[9] with a capacity to produce31
different secondary metabolites,[10] includ-
ing four antibiotics: actinorhodin, calcium-
dependent antibiotic, undecylprodigiosin
and methylenomycin.[11,12] Note that none
of these four antibiotics are of medical
relevance. Thus, it has a metabolic machin-
ery capable of providing precursors for a
large range of different classes of bioactive
metabolites,which is anecessary feature of a
host for heterologous expression of biosyn-
thetic gene clusters and production of the
encoded compounds. An improved S. coeli-
color strain for heterologous expression has

already been developed by removing two plasmids naturally
present in S. coelicolor A3(2) and four major biosynthetic gene
clusters from the chromosome,[13] resulting in a reduced
metabolic and bioactive background. To further improve this
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organism as an expression host, it is necessary to develop a more
comprehensive understanding of the metabolism.

A genome-scale metabolic model (GEM) is a network represen-
tationof themetabolic capabilitiesofanorganism,constructed from
an annotated genome by using inferred or proven gene-protein-
reaction relations, in addition to transport reactions, and an
estimated biomass composition. A detailed reconstruction protocol
is described in ref. [14]. Thenetwork of reactions andmetabolites in a
GEMcanbemathematically representedbya stoichiometricmatrix.
Using a variety of constraint-based modeling approaches, this
stoichiometricmatrix serves as a core input to predict phenotypes of
the organism subject to perturbations or its behavior in different
growth environments. GEMs have been used successfully to direct
strain engineering of organisms (e.g., see ref. [15] for a review).

Currently, there exist three genome-scale metabolic models
for S. coelicolor; the iIB711,[16] the iMA789,[17] and the
iMK1208,[18] with the most recent being published in 2014.
The iMA789 is an improved version of iIB711, and it includes a
more comprehensive reconstruction of pathways for the
production of antibiotics. The iMK1208 was reconstructed de
novo based on annotations in StrepDB,[19] Kyoto Encyclopedia of
Genes andGenomes (KEGG),[20] BioCyc,[21] and TransportDB,[22]

and with updated biomass and ATP-maintenance reactions [18].
Here, we present iKS1317, a more validated and comprehen-

sive GEM of S. coelicolor based on the previous model
iMK1208,[18] appended and corrected with knowledge obtained
from iMA789,[17] KEGG,[20] and BioCyc.[21] Both reactions and
metabolites are annotated with KEGG-identifiers when possible,
and they are named according to guidelines and existing names
in BiGG.[23] The recent transposon mutagenesis study by Xu
et al.[24] enabled a thorough evaluation of the model’s accuracy in
predicting single gene knockout growth phenotypes. iKS1317 is
written in the SBML format (level 3) and is compatible with both
the COBRA Toolbox for Matlab and COBRApy.[25,26]

Using iKS1317 as the basis for constraint-based optimization
analyses, we suggest engineering strategies that may increase the
heterologous production of polyketide antibiotics because of
increased availability of the primary precursor acetyl-CoA. We
predict the optimal yield of acetyl-CoA for S. coelicolor in response
to single, double and triple reaction deletions in three different
growth environments. Furthermore, we compare the results from
OptKnock[27] andGeneticDesign throughLocalSearch (GDLS),[28]

the two strain engineering methods used in this study.

2. Experimental Section

2.1. iKS1317 Model Reconstruction

The GEM presented here, iKS1317, is based on the iMK1208
model by Kim et al.[18] An overview of the origin of reactions and
metabolites in iKS1317 is given in Table 1. Of the 1859 reactions
in iMK1208, 1852 were included in iKS1317 with no or minor
changes. Four out of the seven removed reactions consisted of
lumped reactions that we replaced by detailed, multi-reaction
steps. One reaction was a duplicate, and two reactions in the
actinorhodin pathway were mapped to reactions R09312 and
R09313 in KEGG.[20] A complete list of the removed reactions is
provided in S1, Supporting information.

Based on the original biomass reaction in iMK1208, a second
biomass reaction were constructed where the amino acids have
been replaced by their respective tRNA-charged versions. The
corresponding released tRNAmolecules were added as products
to balance the equation, and we adjusted the stochiometric
coefficients of ATP, ADP, water, protons, and phosphate to
account for the energy consumed by the reactions charging the
amino acids with tRNA molecules. The content of both biomass
reactions is given in S2, Supporting information.

Metabolites in iMA789 and reactions in both iMA789 and
iMK1208 were mapped to KEGG-identifiers,[20] making it
possible to directly compare the two models.[17,18] The
iMK1208 reconstruction is not based upon the iMA789, and
we found 167 reactions in iMA789 not present in iMK1208 that
we chose to include in iKS1317. Themetabolites weremapped to
KEGG-identifiers based on their name and chemical formula,
and the reactions were mapped based on name, reactants,
products, and co-factors. With the reactions annotated with
KEGG-identifiers we could compare the content of iKS1317 with
the list of reactions in KEGG associated to genes in the genome
of S. coelicolor A3(2). This allowed us to find reactions in KEGG
not already present in the model, and this investigation resulted
in another 87 reactions appended to iKS1317. We assumed that
the annotations in KEGGwere correct if the reactions fitted well
with the existing content of the model. If the KEGG-annotations
were in contradiction to our existing model or involved a new
pathway, they were further evaluated by using BioCyc, published
literature, BRENDA, or Uniprot-SwissProt.[21,29,30]

The metabolite formulas in iMA789 and KEGG are given in
neutral (non-charged) form, while charged formulas are used in
iMK1208. Most metabolites are charged in the cellular environ-
ment and this is also recommended in the 96-step protocol for
model reconstruction by Thiele and Palsson.[14] We calculated the
charged chemical formula of the metabolites added from KEGG
and iMA789 at pH 7 using eQuilibrator.[31] Since not all chemical
formulas could be calculated in this fashion, the formula for some
metabolites were inferred by comparing neutral and charged
formulas for similar metabolites.

eQuilibrator was also used to calculate the change inGibbs free
energy at standard conditions to infer reaction directionality in
reactions from KEGG and iMA789. Because the concentration of
each metabolite in the cell is unknown, we cannot accurately
predict the change in Gibbs free energy of a reaction. Hence, we
assumed most reactions to be reversible unless eQuilibrator
predicted a large (>30 kJmol�1)[32,33] change in Gibbs free energy
of the reaction.

Table 1. Origin of reactions and metabolites in the reconstructed
metabolic network iKS1317.

Reactions Metabolites

iMK1208 1853 1435

iMA789 167 68

KEGG 87 69

BioCyc 12 9

A detailed overview of all reactions and their origin is found in S2, Supporting
information.
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By using the excellent review of the biosynthetic pathways in
S. coelicolor by Challis,[11] we added pathways for three secondary
metabolites (geosmin, albaflavenon, methylenomycin) and
extended the undecylprodigiosin pathway to include streptor-
ubin. Most of these reactions were also described in BioCyc.[21]

Fifty new transport reactions were added from iMA789, one of
them transporting sucrose into the cytoplasm. The latter reaction
enabled growth with sucrose as the sole carbon source, but
according to Hodgson[34] (as referred to by Borodina et al.[16]) S.
coelicolor is unable to catabolize sucrose. However, S. coelicolor is
supposed to easily take up sucrose to balance the osmotic
pressure (Bibb, 1985, as cited by Elibol, 1998).[35,36] To avoid this
erroneous in silico prediction, the uptake reaction rate for the
sucrose-transport reaction was set to zero.

2.2. Validation of iKS1317

A listing of growth phenotyping data is available in the paper
describing iMA711.[16] Through additional literature review, we
were able to identify growth data for 63 conditions for wild-type or
mutant strains.[16,34,37–44] The transposon mutagenesis data
published by Xu et al.[24] provide a valuable resource for model
validation and improvement. This data set includes the growth
phenotyping for497differentgeneknockoutmutants, fromwhich
365 are considered to be non-essential and 132 considered to be
essential, unconditionally of the growth environment. The non-
essential genes are confirmed by the ability of their knockout
mutants to grow. The 132 unconditionally essential genes are
identifiedby their lackofpresence inanyof thecultivatedknockout
mutants. Because the probability of having a gap in the genome in
the transposon mutagenesis data increases with decreasing gap
length, only gaps, and thus only genes, longer than 1.9 kb were
included in the list of unconditionally essential genes.[24] One
hundred thirty-seven of these 497 different genes are present in
iKS1317, of which 77 are non-essential and 60 are considered
unconditionally essential genes. The transposon mutagenesis
studywas carried out on theS. coelicolorX737mutant, fromwhich
all genes in the actinorhodin gene cluster are removed. We
therefore removed these genes from our in silico model before
computing the gene knockout growth phenotypes of iKS1317. In
this study, we have assumed that the observations from the
transposonmutagenesis study are absolutely correct, however this
kind of large scale knockout experiments is difficult and can
contain errors. A detailed overview of all tested growth conditions
is found in S3, Supporting information.

Weperformed the comparison of in silico and in vivo growth in a
binary fashion, classifying each condition as either growth or no
growth. To compare growth rates in different environmental
conditions we constrained the total uptake of carbon and nitrogen
to 12.6 and 1.85mmol (g dryweight h)�1, respectively. This corre-
sponds to the maximal experimentally observed uptake of glucose
(2.1mmol (g dryweight h)�1)[45] and the simulated corresponding
ammonium uptake (1.85mmol (g dry weight h)�1). The specific
uptake rates for each of the evaluated environments are given in S3,
Supporting information. When we compared in silico predictions
with experimental data, we needed to impose a lower threshold for
the experimentally measurable growth rate. The measured growth
rate for the maximal uptake rate of glucose is 0.128h�1,[45]

corresponding to a doubling time of about 5.4h. Consequently, we
considered growth with a doubling time of more than 1 day as a
reasonable lower threshold. This choice of threshold value only
affected the growth on L-phenylalanine as carbon source, with a
computationally predicted doubling time of 70h.

For comparing our in silico predictions with growth data from
the transposon mutagenesis study,[24] we used a threshold of 50%
of the in silico wild-type growth rate in the complex cultivation
medium todecide the binary growth versusnogrowth test.[46] This
relatively large thresholdwas considered tobe appropriatebecause
of the methods used in a transposonmutagenesis study. We used
the second biomass reactionwhere the amino acids in the primary
biomass function are replaced by their respective tRNA charged
versions to predict the knockout phenotypes. This enabled correct
phenotypepredictionformutantswhere theknockedoutgenesare
related to tRNA charging of amino acids.

The transposon mutants were sporulated and grown in
complex media (SFM[47] and YBP,[48] respectively). This has
direct implications for the modeling, since it is difficult to
determine the carbon and nitrogen sources that actually were
available and utilized by the organism. We therefore assumed
that all carbon and nitrogen sources with an exchange reaction
present in iKS1317 were available, a detailed list is given in S3,
Supporting information. However, to shed light on some of the
limitations of the use of the transposon mutagenesis data, we
also included a comparison where the in silico growth of
mutants was predicted with only glucose and ammonium
available as the carbon and nitrogen source, respectively.

2.3. Suggesting Optimal Knockout Strategies with iKS1317

Two different strain design algorithms, OptKnock[27] and
GDLS,[28] were used to predict genetic manipulations for target
overproduction. The methods use constraint-based optimization
to suggest reaction knockout (constraining themetabolic flux of a
reaction to zero) strategies to gain targeted overproduction while
optimizing internal (biomass yield) and external (product yield)
cellular objectives. A direct consequence of these algorithms
design is that overproduction of the target becomes an obligatory
by-product of growth.[27,28] These methods are accessible through
theCOBRAToolbox v3.0[25] inMatlab. The suggested reactions can
be removed in vivo by knocking out one or more of the genes
encoding the enzymes catalyzing the reaction.

The reaction knockout strategy was constrained with upper
and lower bound on the ATP-maintenance reaction set to
2.65mmol (g dry weight h)�1[18] and with a lower bound on the
biomass growth rate of 0.05/h. The uptake rate of available carbon
and nitrogen sources were set to 0.8mmol (g dryweight h)�1,
except for the uptake of ammonium which was unlimited. We
constrained OptKnock and GDLS to only allow knockout of
enzymatic reactions with one or more associated genes, that is,
all exchange reactions, 90 transport reactions, the biomass
reactions, and the ATP-maintenance reaction were restricted
frombeing removed.Additionally, 18 reactions related to oxidative
phosphorylation were neither allowed to be knocked out (see S4,
Supporting information, for details). The triple knockouts with
OptKnock were computed on one node of an HPC platform
with access to two Intel Xeon E5-2660 v3 CPUs.
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We implemented the strain design algorithms with iKS1317
in three different growth environments: 1) a basic environment
with glucose and ammonium; 2) a glucose-based environment
enriched with nitrogen sources, that is, glutamate, nitrate, and
ammonium; and 3) an environment enriched with carbon
sources, that is, galactose, glycerol, mannitol, and with
ammonium as the nitrogen source. An overview is given in
Table 3A. By comparing the predicted strain engineering
strategies in these three environments, we could evaluate the
consistency of the suggested genetic modifications.

3. Results

The genome-scale metabolic model iKS1317 of S. coelicolor,
contains 1317 genes (16% of the protein-coding genes in the
genome),[49–51] 2119 reactions and 1581 metabolites. An
overview of the iKS1317 composition is given in Figure 1B.
Both the model reactions and metabolites are now consistently
annotated with KEGG IDs whenever possible. Reactions are
annotated to 96 different pathways within 10 different
subsystems, as defined by KEGG (Figure 1B).[20,53] The
additional reactions and genes relative to iMK1208 are mostly
located in primary metabolism. However, we have also added
pathways allowing the production of geosmin, albaflavenon,
coenzyme F420, and methylenomycin, none of which are
present in the previous model, iMK1208.[18]

3.1. 83.3% Accuracy in Predicting Growth and Knockout
Phenotypes

When we test the ability of our model to correctly predict
experimental growth phenotypes, we find correct predictions in

96.5% (55/57) of the tested growth environments for thewild-type
S. coelicolor (Table 2). Another approach for assessing the quality of
a genome-scale reconstructedmetabolic network, is to compare in
vivowith insilicopredictionsofgrowthphenotypes for single-gene
knockout mutants. This test is assessing the quality of the
reconstruction of alternative metabolic pathways, and thus, is a
complementary test to that of wild-type growth phenotyping. We
found that iKS1317 predicts the correct knockout phenotype in
78.4% (120/153) of the compared conditions (Table 2). Eight of the
correctly predicted knockout phenotypes are related to tRNA
charging of the amino acids and would be false if the primary
biomass reaction was used in the validation. In sum, iKS1317 has
been evaluated in 210 different conditions and has an accuracy of
83.3% (175/210) in predicting growth and knockout phenotypes.
The iMK1208 provides similar accuracy for predicting growth
phenotypes (96.5%) and a 71.4% (105/147) accuracy for knockout
mutants, resulting in an overall accuracy of 78.4% (160/204)
(Figure 1A). Six of the 153 knockout phenotypes could not be
evaluated by iMK1208 because the genes were not present in the
model. A spreadsheet describing all growth comparisons is
provided in S3, Supporting information.

3.2. OptKnock and GDLS Predicts Approximately 2-Fold
Increase of Acetyl-CoA Production for Double-Knockout
Mutants

Since the pyruvate dehydrogenase (PDH) reaction produces
acetyl-CoA from pyruvate and coenzyme A (CoA), we selected it
as the target reaction for the strain engineering analyses. The two
strain engineering strategies, OptKnock[27] and GDLS,[28]

predicted identical reaction knockouts as the optimal solution

Figure 1. A) The table displays a side-by-side comparison of the two most recent genome-scale metabolic models for S. coelicolor. When assuming
minimal cultivationmediumwith glucose and ammonium as the only carbon and nitrogen source, iKS1317 has a total accuracy of 90%. See Section 4 for
details. B) The pie chart shows how reactions in iKS1317 are distributed over the main KEGG pathways, as well as exchange and transport reactions.
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for single, double and triple knockouts in environments 1 and 3.
For environment 2, both the single and double knockouts were
identical, but GDLS provided a sub-optimal solution for the
triple-knockout.

OptKnock also provides alternative solutions when several
strategies are optimal (Strategy 7 and 8, Table 3B) and a pre-
determined number of sub-optimal solutions (S4, Supporting
information). The predicted production rates of acetyl-CoA
through the PDH reaction are reported as the ratio of the rate in
the knockout mutant to the rate in the wild-type in the same
growth environment (Figure 2A, Table 3B). Absolute production
rates, growth rates, associated genes, and sub-optimal solutions
are provided in S4, Supporting information.

A numbering of the suggested strain engineering strategies
and the reactions suggested for knockout are given in Table 3B.
The name, KEGG ID and related pathway of these reactions are
given in Table 3C. In the following section we refer to the
strategies by the numbering and the reactions by their name.

The triple knockout in Environment 2 (Strategy 1) disrupt the
synthesis of glutamate from alpha-ketoglutarate and provide the
largest maximal relative production of acetyl-CoA (2.84).
However, this strategy is not recommended for in vivo
experiments because the minimal possible relative flux through
PDH in this strategy is zero (Figure 2A). The double knockout in
this environment (Strategy 2) provide a better solution: a large
maximal relative rate of acetyl-CoA production (2.62) and a
minimal relative equal the wild-type strain. In this strategy
succinyl-CoA synthetase and glycine hydroxymethyltransferase
is removed, and the effect on the flux distribution in the TCA
cycle and central metabolism is displayed in Figure 2B. The
reactions with major increase and decrease in flux is highlighted
in red and blue, respectively. The removed succinyl-CoA
synthetase is marked by a red X, and it is obvious that this
has major impact on the flux distribution in the TCA cycle. We
observe that the flux is rerouted out of the TCA cycle, into
glyoxylate cycle to produce succinate and malate through
isocitrate lyase and malate synthase. This increases the flux
through the PDH reaction because malate is converted to
pyruvate by malate dehydrogenase. Glycine hydroxymethyl-
transferase converts serine to glycine and is not shown in this
figure, but the removal reroutes the synthesis of glycine through
threonine. It is not obvious how this connects to the flux change
in the TCA cycle, and this illustrates well why a computational

approach is necessary to identify the optimal engineering
strategies.

Both the double and triple reaction knockouts in Environ-
ments 1 and 3 (Strategy 3–5) give similar changes in the flux
distribution as Strategy 2 (Figure 2B). The overall pattern is that
succinyl-CoA synthetase is knocked out along with either
glutamate dehydrogenase or glycine hydroxymethyltransferase.
The triple knockouts provide the largest predicted maximal
production of acetyl-CoA in these environments (1.97 and 1.79
for Environments 1 and 3, respectively), but the small gain
compared to Strategy 4 (1.80 and 1.71 for Environments 1 and 3,
respectively) will probably not be worth the extra effort required
to perform the additional knockout in vivo. The single reaction
knockout strategies provide almost no increase in the production
of acetyl-CoA (Figure 2A).

4. Discussion

This work presents iKS1317, an updated genome-scale meta-
bolic network for S. coelicolor, providing more accurate
predictions than any previous genome-scale reconstruction for
this organism (Table 1). The iKS1317 network is also more
comprehensive, more thoroughly annotated, and better validated
than previous models.

Many of the discrepancies between in vivo growth and in silico
predictions present in previous metabolic reconstructions of S.
coelicolor are related to the degradation and biosynthesis of
branched-chain amino-acids, and they have been resolved in
iKS1317. It is known that the S. coelicolor Δvdh (SCO4089)
knockout mutant is unable to grow with L-valine, L-leucine, or L-
isoleucine as the sole carbon source,[43] an observation not
supported by iMK1208.[18] However, by only changing the L-
valine (R01214), L-leucine (R01090), and L-isoleucine (R02199)
transaminase reactions from reversible to irreversible, these
reactions are prevented from participating in the degradation of
branched-chain amino acids, and these experimental results are
recovered in iKS1317. In contradiction, the estimated changes in
Gibbs free energy at 1mM concentration and standard
conditions are 3.2� 6.9, �1.2� 3.2, and �4.7� 6.9 kJmol�1

for R01214, R01090, and R02199, respectively,[31] not indicating
that the reactions are irreversible in any direction. However,
different metabolite concentrations and the efficiency of
upstream and downstream reactions have a major impact on
these values.

Second, the ΔmsdA (SCO2726) knockout mutant is incapable
of growth in vivo, with L-valine as the sole carbon source. The
gene msdA encodes for the enzyme methylmalonate-semi-
aldehyde dehydrogenase which catalyze the reactions methyl-
malonate-semialdehyde: NADþ oxidoreductase (R00935) and
3-oxopropanoate:NADþ oxidoreductase (R00705). Removing
the reaction methylmalonate semialdehyde: NADþ oxidoreduc-
tase disrupts the primary degradation pathway of L-valine, but
according to the metabolic reconstruction L-valine can also be
degraded through the pathways for biosynthesis and degradation
of L-leucine. This connection is possible because of the enzyme
catalysing the reaction 2-isopropylmalate synthase (R01213). We
have in iKS1317 introduced a redox coupling (acetyl-CoA/CoA)
between 3-oxopropanoate: NADþ oxidoreductase (R00705) and

Table 2. This table details the result of the comparison between in
silico predictions and in vivo observations.

Growth environments Knockout mutants

In silico Growth No growth Growth No growth

In vivo Growth TP: 51 FN: 0 TP: 78 FN: 6

No growth FP: 2 TN: 4 FP: 27 TN: 42

The left part displays the growth phenotypes for 57 different growth environments
and the right part display growth phenotypes for 153 different knockout mutants.
The two false positive predictions for the growth environments are with glutamine
and aspartate as the sole carbon source. The 27 false predictions for the knockout
mutants are examined in the Discussion section. The following abbreviations are
used: true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN).
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Figure 2. A) Predicted relative production rate ranges of the primary antibiotic precursor acetyl-CoA through the pyruvate dehydrogenase (PDH)
reaction for single, double, and triple reaction knockout mutants in the three different growth environments (Table 3A). Each bar spans between the
minimum and maximum computed rates, relative to the rate of the PDH reaction for the wild-type in the same growth environment. OptKnock[27] and
GDLS[28] provided identical predictions except for the triple knockout in environment 3, where GDLS returned sub-optimal solutions. B) The predicted
change in flux distribution when succinyl-CoA synthetase (marked by red X) and glycine hydroxymethyltransferase (not in figure) are knocked out
(Strategy 2, Table 3B). The flux is rerouted out of the TCA cycle and into the glyoxylate cycle to produce succinate and malate. This increases the flux
through malate dehydrogenase and pyruvate dehydrogenase. The map is drawn using Escher and display only the TCA cycle and related reactions in
iKS1317.[52] The reactions with major increase and decrease in flux are highlighted in red and blue, respectively.
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2-isopropylmalate synthase (R01213) which blocks the latter
reaction for the ΔmsdA knockout mutant and solves this
discrepancy between in vivo observation and in silico prediction.
A detailed description is given in S5, Supporting information.

While our analysis and manual curation of the metabolic
network reconstruction has removed the two before men-
tioned discrepancies, we are still left with an incorrect growth
prediction of the ΔmsdA (SCO2726) mutant with propionate
as the sole carbon source. In contrast to in vivo experi-
ments,[37] the iKS1317 predicts no growth, since the
introduced coupling also disrupts the synthesis of L-leucine,
which is an essential amino acid. Further research is required
to fully understand the regulatory mechanisms involved in the
synthesis and degradation of the branched-chain amino acids
in S. coelicolor.

In iKS1317, we propose a new, possible pathway for the
biosynthesis of L-isoleucine: four intermediate steps cataboliz-
ing pyruvate to 2-oxobutanoate. According to KEGG, S. coelicolor
is missing the initial reaction of this pathway, R-citramalate
synthase. However, upon conducting a protein BLAST
(BLASTP) search,[54] we uncovered a sequence similarity of
47% (E-value: 2e-168) between SCO5529 and the cimA gene in
Geobacter sulfurreducens, where this pathway has been experi-
mentally validated.[55] The same reaction has also been identified
in vivo in Cyanobacteria, and it has been suggested that this
pathway may be present in other organisms.[56] The output from
our BLASTP search is available in S6, Supporting information.

We have used published transposon mutagenesis data[24] to
validate and correct our model predictions for essential genes. In
contradiction to the iMK1208 model predictions,[18] the

Table 3. An overview of the strain engineering environments and results.

(A) Environments

Environment no. Carbon sources Nitrogen sources

1 Glucose Ammonium

2 Glucose Glutamatea, nitrate, ammonium

3 Galactose, glycerol, mannitol Ammonium

(B) Strain engineering predictions

Strategy no. Environment no. Reactions Max production

1 2 R00114, R00093, R00248 2.84

2 2 R00405, R00945 2.62

3 1 R00405, R00658, R00945 1.97

4 1 R00405, R00248 1.80

5 3 R00405, R00248, R00955 1.79

4 3 R00405, R00248 1.71

6 2 R00844 1.05

7 1 R04780 1.04

8 1 R01070 1.04

9 3 R00248 1.03

(C) KEGG ID, name and pathway of suggested reactions

KEGG ID Reaction name Pathway

R00093 Glutamate synthase Glutamate metabolism

R00114 Glutamate synthase Glutamate metabolism

R00248 Glutamate dehydrogenase Glutamate metabolism

R00405 Succinyl-CoA synthetase TCA-cycle

R00658 Enolase Glycolysis/gluconeogenesis

R00844 Glycerol-3-phosphate dehydrogenase Glycerophospholipid metabolism

R00945 Glycine hydroxymethyltransferase Glycine, serine and threonine metabolism

R00955 Uridyl transferase Galactose metabolism

R01070 Fructose-bisphosphate aldolase Glycolysis

R04780 Fructose 1,6-bisphosphatase Gluconeogenesis

Table 3A display the carbon and nitrogen sources of the three environments. Table 3B display the predicted optimal strain engineering strategies: The maximal production
is the relative rate of the pyruvate dehydrogenase reaction (PDH) with respect to the maximal rate of this reaction for the wild-type in the same growth environment.
Table 3C display the KEGG ID, name and pathway of each of the reactions in the suggested strategies. The absolute minimal and maximal production rates, growth rates,
associated genes, and sub-optimal solutions are provided in S4, Supporting information. a)Glutamate is a source of both carbon and nitrogen.
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transposon study indicates that SCO5626 is an essential gene
encoding the ATP/UMP phosphotransferase. According to the
gene annotations in iMK1208, the cmk gene (SCO1760) also
encodes for this enzyme.However, the enzyme encoded by cmk is
highly specific for the ATP/CMP phosphotransferase in prokar-
yotes.[57] Consequently, we removed it from this gene-reaction
rule in iKS1317. Another apparently essential gene is SCO3894,
encoding a transmembrane protein involved in the murein
biosynthesis. This differs in KEGG and iMK1208, which suggest
that theenzymeencodedbySCO2709 isan isozymeof theenzyme
encodedbySCO3894.ABLASTPsearchof themurJgene inE. coli,
where the function of the encoded protein is shown,[58] showhigh
similarity with both SCO2709 (E-value 3e-13) and SCO3894
(E-value 1e-20), and we have therefore kept SCO2709 and
SCO3894 as isogenes in iMK1208. The output from our BLASTP
search is available in S7, Supporting information.

The disagreements between our model predictions and in
vivo observed wild-type growth phenotypes are associated with
the utilization of glutamine and aspartate as carbon
sources.[34] These erroneous phenotypes are also predicted
in iMA789 and iMK1208, and it has previously been suggested
that this lack of in vivo growth is caused by regulatory
effects.[16] It is surprising that S. coelicolor is unable to grow on
L-aspartate, because it is observed in vivo that it can utilize L-
asparagine as a carbon source,[34] which is then degraded to L-
aspartate. Thus, by only taking the topology of the metabolic
network into account, the organism should be able to grow on
L-aspartate as well.

Contrary to our predictions, S. coelicolor is unable to grow with
glutamine as the carbon source ([34] as cited in ref. [16]). However,
glutamine can be used as a nitrogen source, providing
ammonium through conversion to glutamate by glutaminase
intracellularly. Glutamate is further decarboxylated into γ-
aminobutanoate upon uptake.[59] Borodina et al.[16] suggested
that the intracellular glutamate provided by glutaminase cannot
be further degraded, explaining why glutamine can function as a
nitrogen source but not a carbon source. On the other hand, a
ΔglnA (SCO2198) mutant, lacking glutamine synthase, can
utilize glutamine as a carbon source.[39] According to optimi-
zation theory it is not possible to increase the metabolic
repertoire of a GEM through a gene knockout, since a gene
knockout reduces the solution space.[60] This observation is in
support of the suggestion that a regulatory effect is the cause for
the observed lack of utilization of glutamine as a carbon source
in vivo.

The growth predictions for knockout mutants may seem less
accurate (78.4%) than the growth phenotype predictions (96.5%).
The erroneous predictions are mostly false positives, that is,
iKS1317 predicts growth for knockout mutants that do not grow
in vivo. This indicates that the model is too flexible and contains
optional pathways or isogenes when an in vivo essential gene is
knocked out. As is customary for constraint-based modeling,
unless explicit knowledge is present, one does not account for
possible differences in reaction rates between alternative
enzymes or pathways.[60] Thus, a pathway providing a perfect
replacement in silico may actually be too slow to support
detectable growth in vivo. While it is possible to use enzyme
kinetics to limit the reaction rates in a GEM, it is difficult to
acquire reliable values.[61]

We determined 27 false positive predictions for the different
knockout mutants, that is, 27 genes that are observed as
essential in vivo but not in silico. Fourteen of the false positive
predictions can be traced back to uncertainty of the nutrient
environment, more specifically the available carbon and
nitrogen sources present in the complex growth medium in
which the transposon mutagenesis mutants were cultivated.[24]

One example is the knockout of the gene ddl (SCO5560),
encoding the D-alanine-D-alanine ligase, which is observed to
be an essential gene in the transposon mutagenesis study, in
contradiction to the iKS1317 predictions. However, by simply
removing D-alanyl-D-alanine from the growth medium in
silico, iKS1317 correctly predicts no growth for the Δddl
mutant. These 14 false positives are changed to the true
negative category if we assume a minimal medium with
glucose and ammonium as the sole carbon and nitrogen
sources, respectively. With this assumption, iKS1317 has an
accuracy of 87.1% (134/153) for predicting knockout pheno-
types, resulting in a total accuracy of 90% (189/210). This
demonstrates a challenge with the typical use of transposon
mutagenesis data for model curation and validation.

Another limiting factor is the lower bound of 1.9 kb on the
length of the genes identified as essential reactions. Of the 1317
genes present in iKS1317, only 129 (9.8%) are longer than
1.9 kb. A more extensive transposon mutagenesis study with a
lower threshold would increase value of the data because it
could enable the evaluation of a larger number of essential
genes.

We observe thatmany of the genes annotated to their respective
enzymes, and thus reactions, are inferred from homology with
similar genes indifferent organisms. It is inmost casesnot certain
that these genes actually encode for the same enzymes, potentially
leading to erroneousmodel predictions.Another possibilitywhich
will provide false-positive results is that a gene that ispresent in the
iKS1317 model may not be expressed in vivo. There exist several
methods for using transcriptomics (see Ref. [62] for a comparison)
to restrict themodel solutionspace toonly includegenesexpressed
in the chosen conditions, and such data may improve model
predictions.

By using OptKnock[27] and GDLS[28] we have predicted optimal
single, double, and triple reaction-knockout strategies to increase
the production of acetyl-CoA through PDH. The GDLS algorithm
use heuristics to perform a local search, and it is not guaranteed to
find theoptimal solution.[28]With theGDLSalgorithm the optimal
solution was found for all single and double reaction knockouts,
and in two of the three environments for the triple knockouts.
While OptKnock always find the optimal solution, the CPU-time
for a triple reaction knockout using OptKnock and iKS1317 is
about 160h on a HPC-platform, compared to a few minutes with
GDLS on an average laptop. Thus, for more than three knockouts
with iKS1317, OptKnock becomes practically infeasible when all
possible reactions are considered.

Production of acetyl-CoA was selected as a target for the strain
engineering algorithms because it is the most important
precursor for biosynthesis of polyketides. Increasing the
precursor pool has previously provided increased secondary
metabolite production in S. coelicolor[63,64] and similar strains.[65–
67] Increasing the precursor pool can be combined with
overexpression of the biosynthetic gene cluster encoding the
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pathway producing the target compound to further improve the
likelihood of increased production.[68]

Several precise regulatory mechanisms are involved in the
biosynthesis of antibiotics in vivo. Among these mechanisms,
carbon-source interplay appears to be one of the main factors
controlling secondary metabolism.[69,70] Therefore, reaction
deletion strategies for overproduction of polyketide antibiotics
in silico were suggested in various growth environments
(Table 3A), that included different nitrogen and especially
carbon sources. Both Strategy 2 and 4 seem like good
suggestions for in vivo strain optimization: Strategy 2
provides the largest increase in acetyl-CoA production of
these two, but Strategy 4 is more robust to different growth
environments.

When comparing the suggested strain engineering strategies
with experimental data, we find good agreement with the results
from Huang et al.[71] that found increased production of FK506
in a ΔgdhA Streptomyces tsukubaensis knockout mutant. FK506 is
a combined polyketide synthase and non-ribosomal peptide with
acetyl-CoA as one of themain precursors, andΔgdhA encodes for
glutamate dehydrogenase (R00248), one of the suggested
knockouts in Strategy 1, 4, 5, and 9 (Table 3B).

However, when taking the transposon mutagenesis data into
account, some of the suggested strategies are in contradiction to
observed knockout mutants: the sucC (SCO4808) and sucD
(SCO4809) genes encoding the succinyl-CoA synthetase com-
plex are classified as essential genes.[24] Succinyl-CoA synthetase
(R00405) is one of the two knocked out reactions in both Strategy
2 and 4 (Table 3B). According to iKS1317 and protein BLAST
SCO4808 and SCO4809 are not essential because SCO6585 and
SCO6586 are isogenes encoding the same enzyme complex with
E-values of 2e-145 and 1e-156, respectively (S8, Supporting
information). Additionally, iKS1317 predicts less than 2%
reduction in growth rate if succinyl-CoA synthetase is knocked
out. Possible reasons for this discrepancy include: 1) The genes
SCO6585 and SCO6586 may not be expressed in the cultivation
media used in the transposonmutagenesis experiment[24] and 2)
iKS1317 is too flexible and predicts an efficient flux rerouting
when succinyl-CoA synthetase is removed which does not occur
in vivo. Consequently, our computational in-depth analysis of
iKS1317 serves as an example of the systems-biology science
iteration paradigm, by producing further hypothesis that need
experimental follow up.
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Abstract 

Background: A wide range of bioactive compounds is produced by enzymes and 
enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can 
be identified and functionally annotated based on their DNA sequence. Candidates for 
further research and development may be prioritized based on properties such as their 
functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production 
of the target compound in the native strain is often not achievable, rendering heterolo-
gous expression in an optimized host strain as a promising alternative. Genome-scale 
metabolic models are frequently used to guide strain development, but large-scale 
incorporation and testing of heterologous production of complex natural products 
in this framework is hampered by the amount of manual work required to translate 
annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for 
an automated reconstruction of BGC associated metabolic pathways responsible for 
the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes 
of bioactive compounds.

Results: The developed pipeline correctly predicts 72.8% of the metabolic reactions 
in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By 
introducing the reconstructed pathways into a genome-scale metabolic model we 
demonstrate that this level of accuracy is sufficient to make reliable in silico predictions 
with respect to production rate and gene knockout targets. Furthermore, we apply the 
pipeline to a large BGC database and reconstruct 943 metabolic pathways. We iden-
tify 17 enzymatic reactions using high-throughput assessment of potential knockout 
targets for increasing the production of any of the associated compounds. However, 
the targets only provide a relative increase of up to 6% compared to wild-type produc-
tion rates.

Conclusion: With this pipeline we pave the way for an extended use of genome-scale 
metabolic models in strain design of heterologous expression hosts. In this context, 
we identified generic knockout targets for the increased production of heterologous 
compounds. However, as the predicted increase is minor for any of the single-reaction 
knockout targets, these results indicate that more sophisticated strain-engineering 
strategies are necessary for the development of efficient BGC expression hosts.
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Background
Natural products provide an immense source of bioactive small molecules of medical 
and agricultural importance [1–3]. The biosynthesis of these small-molecule bioactive 
compounds is usually governed by genes that are clustered in physical close proximity 
on the genome in fungal [4] or bacterial species [5], commonly known as biosynthetic 
gene clusters (BGCs). The revolution in sequencing technology has enabled access to 
complete genome sequences for an increasing number of bacteria and fungi. Min-
ing of these genomes has revealed a vast abundance of BGCs, many more than the 
number of bioactive compounds observed in vitro [6, 7], suggesting that many BGCs 
are not expressed or that their respective compounds are not produced at detectable 
amounts in laboratory conditions. The activation of these silent BGCs may lead to the 
discovery of many novel bio-pharmaceuticals [8].

One promising avenue towards exploration of the bioactive potential of these silent 
BGCs is heterologous expression in host strains that are engineered to achieve maxi-
mal production of the encoded natural products [9, 10]. With current software [11] 
it is possible to quickly mine a genome for BGCs and retrieve information about the 
class, location, and functional domains of every gene in each cluster [12]. One may 
further prioritize BGC candidates for heterologous expression based on this informa-
tion, (dis)similarity to known BGCs, bioactivity assays and mass spectrometry profiles 
of produced compounds, and subsequently transfer the selected BGCs to a chosen 
host strain using available genetic tools [13, 14]. However, the cloning and transfer 
of BGCs can be time-consuming and difficult depending on the genetic tools avail-
able for the native and the heterologous host strains, as well as the size of the BGC in 
question [15]. Additionally, it is not clear which host strain or which genetic modifi-
cations will maximize the yield of the secondary metabolite synthesized through the 
metabolic pathway catalyzed by the enzymes, or enzyme complexes, encoded by the 
heterologously expressed BGC [16, 17].

Genome-scale metabolic models (GEMs) can predict the consequence of genetic mod-
ifications [18] and are routinely used to guide strain design for a wide range of purposes 
[19]. However, this approach has still not gained traction in guiding strain-engineering 
efforts to increase the heterologous production of complex natural compounds, despite 
a number of available GEMs for Actinobacteria [20], a phylum known for an extremely 
diverse secondary metabolism responsible for about two-thirds of all known antibiot-
ics in use today [21]. Previous efforts are limited to maximization of native secondary 
metabolites [22–24] or precursor pools [25]. One reason for the lack of computational 
efforts leveraging GEMs to assess heterologous production from BGCs is the significant 
amount of work required to map out the associated metabolic pathway, although most 
of the required information is contained in the output from software used to identify 
and annotate BGCs, such as antiSMASH [12]. In this work, we address this hurdle by 
developing a pipeline that parses the output obtained from antiSMASH and constructs 
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the corresponding metabolic-synthesis pathway, thereby making BGCs available for 
constraint-based analysis and strain engineering guided by GEMs.

We have chosen to focus on non-ribosomal peptide synthetases (NRPSs) and two 
types of polyketide synthases (PKSs), namely type 1 PKSs and trans-AT PKSs. These 
BGC classes are of particular interest because of their vast abundance [26, 27] and great 
prospect to become novel biopharmaceuticals [28, 29]. For an exhaustive description 
of NRPS and PKS biosynthesis, we refer the reader to a range of excellent reviews [27, 
30–33], but we provide the brief summary required as a context for the later description 
of the pipeline and results. Both NRPS, and type 1 and trans-AT PKS biosynthesis are 
performed by multidomain enzyme complexes that create a polymer from amino acid 
or acyl-CoA building blocks, respectively. The chain elongation is performed by well-
defined modules that makes it tractable to predict the biosynthetic pathways producing 
the associated compounds from the annotated sequence data, but the presence of itera-
tive modules can complicate predictions [34–36]. An active chain elongating module in 
an NRPS cluster requires at least three functional domains: a condensation (C) domain, 
an adenylation (A) domain and a peptidyl carrier (PCP) domain. The A domain acti-
vates a specific amino acid (or in some cases a carboxylic acid) and facilitates the attach-
ment of the amino acid to the PCP domain, while the C domain catalyzes the formation 
of peptide bonds required to elongate the peptide. In addition to these three domains, 
NRPS modules can replace the C domain by a Cy domain performing condensation and 
heterocyclisation or additionally contain a methyltransferase (MT) and/or an epimerase 
(E) domain. The load module initiating biosynthesis usually lacks the C domain, while 
the terminating module contains either a thioesterase (TE) or a thioester reductase (TR) 
domain.

Similar to NRPSs, chain elongating modules of PKSs rely on three functional domains: 
an acyltransferase (AT) domain that recognizes a specific extender unit and attaches it to 
the acyl carrier (ACP) domain. The third domain, ketosynthase (KS) catalyzes the Clais-
sen condensation required to extend the polyketide chain. A standard PKS load mod-
ule contains only the AT and ACP domain, and a TE or TR domain is required for the 
release of the polyketide chain by the final PKS module. PKS modules can also feature 
the reducing domains ketoreductase (KR), dehydratase (DH) and enoylreductase (ER), 
and different combinations of functional domains yield a large variety of molecular 
transformations, in particular for the trans-AT PKSs [32]. These trans-AT PKSs not only 
differ from normal (cis) modular PKSs by having a larger module diversity and devia-
tions from canonical rules, but they are also recognized by freestanding AT domains 
that perform the chain elongation [32]. The diversity of PKS and NRPS natural prod-
ucts is further extended by hybrid variants containing both NRPS and PKS domains and 
modules.

We acknowledge that experimental analyses of the final and intermediate products, as 
well as enzyme activity assays, are required to fully unravel the details of the metabolic 
pathways associated with a BGC. However, for the chosen classes of BGCs (NRPS, type 
1 PKS, and trans-AT PKS), we hypothesize that the information acquired from genome 
mining is sufficient to make in silico predictions that are biologically relevant. After 
assembling and evaluating the accuracy of the new pipeline presented in this work, we 
demonstrate its value towards high-throughput assessment of BGCs by reconstructing 



Page 4 of 15Sulheim et al. BMC Bioinformatics           (2021) 22:81 

the metabolic pathways for 943 of the BGCs currently in MIBiG [37]. Furthermore, we 
predict the optimal single reaction inactivation (by gene knockout) strain-engineer-
ing strategy for natural product synthesis based on each BGC when introduced into a 
genome-scale metabolic model of Streptomyces coelicolor, a model organism among the 
Actinobacteria and a popular heterologous BGC expression host [15, 38].

Results
We have developed the Biosynthetic Gene cluster Metabolic pathway Construction 
(BiGMeC) pipeline that leverages antiSMASH results to create the metabolic pathway 
corresponding to a PKS or NRPS biosynthetic gene cluster (Fig. 1a). The pipeline details 
each enzymatic reaction of the metabolic pathway, including redox cofactors and energy 
demand. The results are stored in a format that is easily introduced into a GEM using 
popular tools for constraint-based reconstruction and analysis, such as cobrapy [39] or 
COBRA Toolbox [40].

The hallmarks of PKS- and NRPS-genes are adjacent functional domains that in total 
make up one or several modules that initiate, extend or cleave off the polyketide or pep-
tide product, respectively [30, 32, 33]. The output from antiSMASH comprises informa-
tion about these modules and their functional domains, and occasionally also the specific 
extender unit or chemical transformation associated with each functional domain [12]. 
The BiGMeC pipeline not only parses this information, but uses well-reasoned heuristics 

Modules 
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- domains
- location

Genes
- location
- smCOG
- strand

- domains
- modules
- type

Parse gene 
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Parse module
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Predicted pathway
- substrates
- products
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oMTKSKS tAT DH KR AGene A
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Fig. 1 Overview of the BiGMeC pipeline. a Schematic description of how the BGC annotation file produced 
by antiSMASH is parsed and used to construct the associated metabolic pathway. b BiGMeC extends the 
rule-based identification of modules from antiSMASH with bridging modules and analysis of module activity, 
as exemplified here with this toy BGC: The last module in gene A and the first module in gene B (marked by 
green edges) constitute an active bridging module that is not identified by antiSMASH [12]. The last module 
on gene C (red edge color) are most often found to be inactive, a feature currently incorporated into BiGMeC
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to handle deviations from canonical rules and cases where information is missing (see 
Materials and Methods). Improvements in determining module function includes iden-
tification of bridging modules in trans-AT PKSs and non-extending modules due to the 
presence of oMT domains [32] (Fig. 1b).

We first assessed the accuracy of the BiGMeC pipeline by comparing its predictions 
with experimentally characterized and manually curated metabolic pathways. To this 
end, we compared the substrates, cofactors, and reaction products of each step of the 
metabolic pathway associated with eight well-characterized BGCs (Fig.  2a, Additional 
file 1). These BGCs cover a range of BGC classes, including type 1 PKS, trans-AT PKS, 
NRPS and hybrids, and we believe they provide a test set that is sufficiently diverse 
to probe the pipeline for its strengths and weaknesses. Overall, BiGMeC appends the 

both eitherPredicted in 

a

b c

Fig. 2 Analysis of BiGMeC prediction accuracy for eight selected BGCs. a Barplot showing the number of 
correct domains when comparing BiGMeC-constructed pathways with pathways as they are detailed in the 
literature (Additional file 1). The filled part of each bar, as well as the ratio printed above, shows the number 
of correct domains for each BGC. Extending domains comprise the domains that append an extender unit to 
the polyketide or peptide backbone, while the non-extending domains cover all other domains. b Predicted 
maximum production rate when introduced into a S. coelicolor GEM. The x- and y-axis represent the maximal 
production rate using the metabolic pathway created based on literature or reconstructed with BiGMeC, 
respectively. c This panel shows a comparison of the predicted reaction-knockout targets (x-axis) when using 
a metabolic pathway created based on literature or with BiGMeC. Similar predictions are shown as green 
tiles, while incorrect predictions (predicted in either but not both of the two cases) are shown as red tiles. The 
names of the model reaction IDs are: TKT1: transketolase; ASPT: aspartate ammonia-lyase; FERO: ferroxidase; 
GLYCL: glycine cleavage system; MCOALY: malyl-CoA lyase; AGT: alanine-glyoxylate aminotransferase; FUM: 
fumarase; ASPTA: aspartate transaminase; CITMS: (R)-citramalate synthase; ERTHMMOR: 3-isopropylmalate 
dehydrogenase; CITCIa2: (R)-2-Methylmalate hydro-lyase; CITCIb: 2-methylmaleate hydratase; GHMT2r: glycine 
hydroxymethyltransferase; PSERT: phosphoserine transaminase; PGCD: phosphoglycerate dehydrogenase; 
PSP_L: phosphoserine phosphatase; FDH: formate dehydrogenase
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correct metabolic reaction for 72.8% (166/228) of the functional domains in all eight 
BGCs. Of these functional domains, BiGMeC chooses the correct extender unit for 
81.3% (74/91) of the domains extending the peptide or polyketide. For all other domains, 
including chain initiation, reductive domains, methyltransferases and final tailoring 
reactions, the accuracy is 67.2% (92/137).

A large number of the incorrect predictions derive from wrong assignments of inac-
tive KR domains by antiSMASH [12]. Across the eight closely inspected BGCs, KR 
domains are almost always active, but on several occasions antiSMASH predicts that 
these domains are inactive. The incorrect predictions of KR domain activity are to a 
large extent associated with adjacent MT domains. Furthermore, this leads to incorrect 
assignment of the activity of succeeding DH and ER domains because they act on the 
functional moiety produced by the preceding domain. For the prediction of extender 
units, most incorrect assignments derive from missing recognition of non-elongating 
modules caused by inactive KS domains devoid of a conserved histidine residue required 
for carboxylative condensation [32]. More specifically, only 10 of 16 KS domains are 
active in the oocydin BGC [32, 41]. Another significant source of incorrect domains is 
the anabaenopeptin cluster that has two consecutive genes, each having two modules 
that initiate biosynthesis and perform first chain elongation, respectively, yielding two 
slightly different variants of the final compound. The BiGMeC pipeline treats these two 
genes as consecutive steps of the same pathway, and therefore, predicts too many chain 
elongations in the biosynthesis.

To investigate how much the errors in the constructed metabolic pathways affect 
model predictions, we introduced both the literature-based and the BiGMeC pathway 
reconstructions into the consensus GEM of S. coelicolor (Sco-GEM) [16] and compared 
the maximal production rate of the final compound (Fig.  2b). In general, we observe 
quite similar rates for the eight BGCs (Pearson ρ = 0.75 , P = 0.03 ), suggesting that the 
incorrect domains only have a minor impact on the predicted production rates. The off-
set in the production of leupyrrin likely comes from an incorrect starter unit while the 
offset in oocydin production is caused by a fairly large error in the predicted number of 
malonyl-CoA extender units (10 vs. 16).

The anticipated use of the developed pipeline towards strain engineering of expression 
hosts underscores the need to elucidate if model-based strain designs using BiGMeC-
constructed pathways deviate from results using pathways reconstructed according 
to literature. To this end, we predicted optimal single-reaction knockout mutants that 
should increase the production rate of the associated product (Fig.  2c). Note that, a 
reaction knockout is the practical implication of disrupting one or more of the genes 
encoding the enzyme catalyzing the corresponding reaction. For 6 out of 8 BGCs there 
is a good overlap between pairwise pathway reconstructions. This includes the cases of 
tolaasin and geldanamycin, where no knockout target is identified with either of the two 
pathway reconstructions.

To demonstrate the power of BiGMeC in high-throughput assessment of BGCs, we 
employed the pipeline on 1883 of the 1923 BGCs in the MIBiG database (version 2.0) 
[37]. For 40 of the 1923 BGCs, we could not obtain the antiSMASH output file because 
the link from MIBiG was broken. The 943 ( 50.1% ) metabolic pathways that were suc-
cessfully reconstructed with BiGMeC cover both fungi and a range of different bacteria 
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(Fig. 3a). Most clusters are either type 1 PKS, NRPS, or hybrids of these two, and only 77 
of the BGCs share similarity with trans-AT PKS (Fig. 3b). The 940 remaining BGCs were 
not analyzed either because the BGC class was not covered by BiGMeC (such as RiPPs, 
terpenes, Type 2 and Type 3 PKSs) or because functional modules and domains were 
lacking in the results from antiSMASH.

We introduced each of the 943 reconstructed pathways into Sco-GEM [16], and pre-
dicted single-reaction knockout strategies improving the production of the final pathway 
product. Surprisingly, only 17 different reactions were suggested as a knockout target 
in one or more of the 943 in silico heterologous expression experiments (Fig. 3c, d). Of 
these 17 reactions, aspartate transaminase is predicted to provide on average the larg-
est increase in production (Fig. 3c) and is also the most frequently suggested candidate 
(Fig. 3d). However, the predicted production increase is minor for all of the 17 suggested 
reactions, including aspartate transaminase, with a maximum increase of 6% relative to 
the wild-type production rate.

Discussion
To make novel natural product pathways encoded by BGCs accessible to the constraint-
based reconstruction and analysis framework, we have developed a pipeline that cre-
ates a draft reconstruction of the metabolic pathway encoded by a BGC. This pipeline 

a

dc

b

Fig. 3 Automatic reconstruction and analysis of 943 BGCs from MIBiG. These BGCs cover a a range of 
different organisms and b a wide variety of hybrid BGCs. c Box plot showing the increase in production for 
the 17 different reaction knockouts that increase the production of one or more of the analysed BGCs. d Bar 
chart showing the number of BGCs where the knockout of each reaction is predicted to increase production 
of the target secondary metabolite. The names of the model reactions used in panel C and D: ASPT: aspartate 
ammonia-lyase; ASPTA: aspartate transaminase; GLYCL: glycine cleavage system; FUM: fumarase; MCOALY: 
malyl-CoA lyase; AGT: alanine-glyoxylate aminotransferase; GHMT2r: glycine hydroxymethyltransferase; PGCD: 
phosphoglycerate dehydrogenase; PSERT: phosphoserine transaminase; PSP_L: phosphoserine phosphatase; 
TKT1: transketolase; ERTHMMOR: 3-isopropylmalate dehydrogenase; CITMS: (R)-citramalate synthase; CITCIb: 
2-methylmaleate hydratase; CITCIa2: (R)-2-Methylmalate hydro-lyase; ENO: enolase: PGM: phosphoglycerate 
mutase
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outlines the correct metabolic reaction for 72.8% of the functional domains in our test 
set comprised of 8 experimentally characterized BGC-encoded biosynthetic pathways. 
One may question whether this accuracy extends to uncharacterized BGCs. In prin-
ciple, as the pathway reconstruction is solely based on genome mining results from 
antiSMASH, there should not be a significant difference in accuracy between well-
characterized and uncharacterized BGCs. However, as antiSMASH relies on annotation 
rules learnt from well-characterized BGCs [42, 43], one may anticipate that uncharac-
terized BGCs that deviate from known canonical rules are less accurately annotated by 
antiSMASH, and therefore less accurately reconstructed by BiGMeC.

By applying the BiGMeC pipeline to 943 BGCs covering NRPSs, PKSs and NRPS-
PKSs hybrids from a wide range of organisms we have demonstrated how the pipeline 
enables high-throughput assessment of potential candidates for heterologous expres-
sion. In an assessment of 943 BGCs, we explored general single-gene knockout strate-
gies for increased heterologous production, and although we identify a set of 17 general 
targets, none provides a drastic increase in production. This result suggests that multiple 
knockouts, over-expression of genes, or strategies that perturb regulatory mechanisms 
are necessary to reroute a large amount of precursors from growth towards secondary 
metabolism, at least in the organism S. coelicolor.

Although the accuracy of the BiGMeC pipeline is sufficient to make biologically rel-
evant pathway reconstructions, this work has also revealed aspects where there is room 
for further improvement. Incorrect assignment of KS and KR domains as active or 
inactive is a large source of error in PKS metabolic pathways, and incorporation of the 
recently developed transATor algorithm would provide an improvement in this context 
[44]. Synthesis of rare precursors and tailoring of the polyketide or peptide succeeding 
the release from the multidomain enzyme complex are two other features with opportu-
nity for improvement. Although the genes encoding enzymes responsible for the synthe-
sis of rare precursors or for the post-release tailoring steps usually are contained in the 
BGC, neither their exact function nor their functional order can be accurately predicted. 
Therefore, the current pipeline relies in certain aspects on assumptions and heuristics 
that apply in general, but with several exceptions. However, with a continuous improve-
ment in algorithms for annotation and identification of BGCs [12, 44, 45] and increased 
experimental characterization [37], current generalisations can develop into more accu-
rate pathway reconstructions that encompass a larger range of deviations from canoni-
cal rules. Furthermore, as the knowledgebase and algorithms for annotation of iterative 
PKSs and ribosomally synthesised and post-translationally modified peptides improves 
[46, 47], these types of BGCs represent obvious targets for further development. Other 
possible targets include terpenes, alkaloids and glycosides, frequently encoded in plant 
and fungal genomes [48–50], or polysaccharides which are of large value in dairy indus-
try [51] and medical applications [52], and the most abundant class of prokaryotic 
BGCs [5]. Nevertheless, accurate pathway reconstruction for these classes of BGCs will 
require accurate descriptions of the biosynthetic rules encoded in the gene clusters. In 
this context, tailoring reactions and post-translational modifications represent particular 
challenges. Further improvement should also aim to accept the output from other anno-
tation software, such as PRISM [53].
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Conclusion
The BiGMeC pipeline is, to our knowledge, the first tool for automatic metabolic path-
way reconstruction specifically targeting PKS and NRPS BGCs. Although the recon-
structed pathways are not able to capture the entire diversity seen in the biosynthesis of 
NRPSs and PKSs [30, 32], the predicted production rates and reaction knockout targets 
are comparable to predictions provided using manually reconstructed pathways. Fur-
thermore, the pipeline can aid model reconstruction efforts, both as a decent starting 
point for further manual curation and as a complement to standard model-reconstruc-
tion pipelines [54]. This is in particular relevant for organisms with a rich secondary 
metabolism, such as the Actinobacteria which are of utmost interest in drug discovery. 
We anticipate that the pipeline presented here can increase the use of GEMs in this con-
text, e.g. to screen different combinations of BGCs and expression hosts or, as shown in 
this work, to explore strain-engineering opportunities. The pipeline is developed in an 
open source environment on GitHub and we encourage interested readers to engage in 
future development through pull request or by raising issues. We also encourage devel-
opers of genome mining tools and databases to converge towards standardized and 
consistent file formats, such as the Minimum Information about a Biosynthetic Gene 
Cluster (MIBiG) initiative [37]. This will ease the development and maintenance of 
downstream pipelines such as BiGMeC, and promote integration of data from different 
genome mining tools. This is intended as a reminder rather than a criticism of existing 
software.

Materials and methods
Software implementation

We developed BiGMeC to translate information about PKS and NRPS BGCs to detailed 
outlines of the metabolic reactions governing the production of the associated second-
ary metabolites. The BiGMeC software and all other associated scripts are implemented 
in Python 3 and publicly available at https ://githu b.com/Almaa sLab/BiGMe C. BiGMeC 
runs from a command-line interface and takes an annotated NRPS or PKS BGC in the 
format of a region-specific GenBank file as produced by antiSMASH 5.1 [12]. It leverages 
the included gene, domain, and module information to make a description of the enzy-
matic reactions encoded by the BGC, including substrate and co-factor usage (Fig. 1a). 
BiGMeC uses a reference model as a library of metabolites and reactions, and in the cur-
rent work, we have used Sco-GEM version 1.2.1, the consensus S. coelicolor GEM [16]. 
This model was obtained from https ://githu b.com/SysBi oChal mers/Sco-GEM.

The BiGMeC pipeline first parses information about the location and annotation of 
the genes and modules as annotated by antiSMASH from the GenBank file (Fig. 1). If 
available, the gene information includes strand, secondary metabolism Clusters of 
Orthologous Groups (smCOG) annotation [55], type of gene, extender unit, annotated 
functional domains and if the gene is a core gene or not. The core genes synthesize the 
core structure of the PKS or NRPS molecule. The module information contains details 
about the type of module and its functional domains. Then, the pipeline assesses the 
presence and order of domains not included in a module, e.g. special load or bridging 
modules (in trans-AT PKS, Fig. 1b) [32], and combines these domains into functional 
modules when possible. The peptide or polyketide backbone is subsequently constructed 
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based on the order of the identified domains and the function of each domain within 
each module. Although NRPS and type 1 PKS modules can be iterative, we here assume 
that the selected BGCs are modular such that each module only performs one chain 
elongation. The reactions associated with the functional domains are listed in Table 1. 
Domains in the BGC that are not contained in a module are assumed to not affect 
the backbone structure. If a terminating domain (thioesterase or thioester reductase) 
domain is encountered, no further chain elongations are carried out. The activity of 
reducing domains (DH, ER, KR) are based on the annotation of the KR domain from 
antiSMASH. Tailoring reactions post PKS synthesis are predicted from the smCOG 
annotations of each gene. The currently implemented tailoring reactions relate to the 

Table 1 List of domains and associated reactions as implemented in BiGMeC

The peptide or polyketide backbone is referred to as  Xn, and in reactions that extend the backbone we refer to the 
elongated backbone as  Xn+1

AA, generic amino acid; 1,3-bpg, 1,3 biphosphoglycerate; CoA, Coenzyme A;  Pii, diphosphate; SAH, S-Adenosyl-L-
homocysteine; SAM, S-Adenosyl methionine; Y, generic starter unit

Abbrv. Name Note Reaction

A Adenylation Activates and attaches AA to PCP ATP + AA + PCP→AA-PCP + 
AMP +  Pii

ACP Acyl carrier protein Facilitates transport in PKSs

AT Acyltransferase Loads extender unit onto ACP Acyl-CoA + ACP → Acyl-ACP 
+ CoA

C Condensation Elongates the peptide by con-
densation

AA-PCP +  Xn →  Xn+1 +  H2O + 
ACP

CAL Coenzyme A ligase Catalyzes the incorporation of 
different starter units, e.g. fatty 
acids, AHBA, and shikimic acid 
[32, 56, 57]

Y + PCP → Y-PCP +  H2O

cMT Carbon methyltransferase Methylates peptide/polyketide SAM +  Xn →  Xn + SAH

Cy Heterocylization Elongates the peptide by con-
densation and cyclization

AA-PCP +  Xn →  Xn+1 +  H2O + 
ACP

DH Dehydratase Forms double bound by removal 
of  H2O

Xn →  Xn +  H2O

E Epimerase Stereochemical inversion Xn →  Xn

ECH Enoyl-CoA hydratase/isomerase Not able to discriminate, so 
BiGMeC assumes isomerase

Xn →  Xn

ER Enoyl reductase Reduces double bound formed 
by the DH domain to a methyl-
ene group

NADPH +  H+ +  Xn →  Xn + 
 NADP+

FkbH FkbH-like domain Domain in an alternative loading 
module. Dephosphorylates 
1,3-bpg [58]

1,3-bpg + ACP → D-lactate-ACP 
+ 2  Pi

GNAT GCN5-related N-acetyl trans-
ferase

Alt. load module that decarboxy-
lates malonyl-CoA and adds 
acetyl group to ACP [59]

Malonyl-CoA + ACP → Acetyl-
ACP + CoA +  CO2

KR Keto reductase Reduces carbonyl group to 
hydroxyl group

NADPH +  H+ +  Xn →  Xn + 
 NADP+

KS Keto synthase Appends extender unit to 
polyketide

Acyl-ACP +  Xn →  Xn+1 +  CO2 
+ ACP

nMT Nitrogen methyltransferase Methylates peptide/polyketide SAM +  Xn →  Xn + SAH

oMT Oxygen methyltransferase Methylates peptide/polyketide SAM +  Xn →  Xn + SAH

PCP Peptidyl carrier domain Facilitates transport in NRPSs

TD Thioester reductase Releases product from ACP/PCP NADPH +  H+ +  Xn → detached 
product +  NADP+

TE Thioesterase Releases product from ACP/PCP H2O +  Xn → detached product
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smCOGs 1256, 1084, 1002, 1109 and 1062 and includes glycosylation, glycosyltrans-
ferase and incorporation of 2-Amino-3-hydroxycyclopent-2-enone (Additional file 2).

Rare extender units appear in both PKS and NRPS biosynthesis. The synthesis of rare 
extender units is usually carried out by genes in the BGC [60], and we therefore include 
the synthesis of the most common rare extender units (not in the reference library) when 
necessary. This includes hydroxyphenylglycine, beta-hydroxytyrosine, 2-aminobutyric acid, 
pipecolic acid, dihydroxyphenylglycine and 3-amino-5-hydroxybenzoate [56]. Synthesis of 
the rare extender unit methoxymalonyl-ACP [60] is based on the presence of genes with 
specific smCOG annotations (Additional file 2). For the remaining rare extender units, or in 
the case of missing information or nonspecific antiSMASH annotation, we use a conserva-
tive approach where a generic amino acid is used as the extender unit in NRPS modules 
and malonyl-CoA is used in PKS modules. In the case of using a generic amino acid as the 
extender unit, we add a set of pseudo-reactions that can convert every proteogenic amino 
acid into this generic molecule to ensure that the biosynthetic pathway is functional.

The pipeline also handles a number of deviations from the canonical rules, for example 
the deactivation of the KS domain often seen in modules containing O-methyltransferases 
[32]. Furthermore, it is found that the presence of a C domain in the initiating NRPS mod-
ule acylates the initial amino acid [31, 61]. Both in tolaasin [62] and surfactin, currently the 
best studied example of this type of NRPS initiation, the acylating agent is a CoA-activated 
β-hydroxy fatty acid [61, 63]. It is likely that the C-domain has a strong selectivity for a 
specific acylating agent, but since this specificity is not identified by antiSMASH we use 
a generic fatty acid molecule. A third example of exceptions that are handled by BiGMeC 
is bridging modules in trans-AT PKSs where the KS domain is encoded in the first gene 
and the DH and ACP domains follow immediately on the second gene. These modules are 
called dehydratase docking domains (DHD) and are usually not active [32].

Evaluation of the BiGMeC pipeline

To evaluate how well biosynthetic pathways can be constructed solely based on ant-
iSMASH data we compared BiGMeC-constructed pathways with literature-based 
reconstructions for 8 different BGCs, covering different species and classes of BGCs 
(Additional file  1). The 8 BGCs were (MIBiG ID in parenthesis): bafilomycin from 
Streptomyces lohi [64–66] (BGC0000028), geldanamycin from Streptomyces hygro-
scopicus [67–69] (BGC0000066), difficidin from Bacillus velezensis FZB42 [70, 71] 
(BGC0000176), oocydin from Serratia plymuthica [32, 41] (BGC0001032), oxazolomy-
cin from Streptomyces albus [71, 72] (BGC0001106), leupyrrin from Sorangium cellulo-
sum [73] (BGC0000380), anabaenopeptin from Anabaena sp. 90 [74] (BGC0000302) and 
tolaasin from Pseudomonas costantinii [62] (BGC0000447). For each domain in each of 
the 8 different BGCs we compared the BiGMeC-constructed reaction with the real reac-
tion, i.e. the associated reaction as described in the literature. When clearly defined in 
the literature, tailoring reactions were included, but we focused on the synthesis of the 
core peptide/polyketide. The very complex tailoring of leupyrrin [73] was not included.

An initial evaluation was performed by counting the number of correct domains 
(Fig. 2a). The total number of domains include all domains either predicted by BiG-
MeC or described in the literature, and the correct predictions include both true 
positives and true negatives. Next, we incorporated the BiGMeC and literature-based 
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pathway reconstructions into Sco-GEM and predicted the maximum production rate 
of the secondary metabolite produced by each pathway (Fig.  2b). To do so, we per-
formed Flux Balance Analysis (FBA) [75, 76] in cobrapy [39] with the final reaction of 
the BGC encoded pathway as objective and with growth limited to minimum 90% of 
the maximum value. The growth and production were simulated in a growth medium 
with glucose and ammonium as the sole carbon and nitrogen sources, respectively, 
and with a maximum glucose uptake rate of 0.8 mmol gDW−1 h−1 . We did not con-
strain the uptake of ammonium, sulphate, phosphate, oxygen and metal ions. Finally, 
using both the BiGMeC and literature-based pathway reconstructions, we predicted 
reaction inactivation targets (by gene knockout) that would increase the production 
of the associated compound, with a maximum growth rate reduction of 50% (Fig. 2c). 
We limited the set of possible reaction targets to non-essential gene-annotated reac-
tions. The search for optimal knockouts was carried out in a brute-force manner: we 
conducted an iterative knockout of each reaction (within the predefined set of pos-
sible reactions) and, first used FBA to predict the maximum growth of the mutant 
phenotype, and secondly predict the maximum production rate at 99.9% of the 
knockout-mutant’s maximum growth rate. All knockouts that resulted in more than 
0.1% increase in production rate compared to the wild-type were considered knock-
out candidates.

Large‑scale reconstruction of BGC pathways

To demonstrate the value and efficiency enabled by BiGMeC we applied this pipeline 
to all relevant BGCs from the MIBiG database [37]. To get the antiSMASH-generated 
output for all BGCs in MIBiG we automatically downloaded all GenBank-files with a 
url on the form: https ://mibig .secon darym etabo lites .org/repos itory /BGC00 00001 /gener 
ated/BGC00 00001 .1.regio n001.gbk, with the MIBiG ID ranging from BGC0000001 to 
BGC0002057. The MIBiG database currently reports on a total of 1923 BGCs but due 
to different reasons (e.g. missing entries) we could only obtain the antiSMASH result 
for 1883 of the entries. For all BGCs at least annotated to either type 1 PKS, trans-AT 
PKS or NRPS we used the BiGMeC pipeline to reconstruct the corresponding metabolic 
pathway. We predicted optimal knockout strategies for each of successfully constructed 
pathway using the same procedure as described for the 8 BGCs used to evaluate the 
BiGMeC pipeline.
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Tailoring reactions

We surveyed gene clusters in MIBiG [1] to explore how specific smCOG gene
annotations could be used to determine the tailoring reactions associated
with the biosynthesis of a polyketide or non-ribosomal peptide synthetase:
we compared the presence of specific secondary metabolism Clusters of Or-
thologous Groups (smCOGs) [2] annotations with the presence of different
tailoring reactions as described in the literature. This led to three fairly ro-
bust heuristic that were implemented into the BiGMeC pipeline (Table S1).
The data that these heuristics are based on are further described in separate
sections below.

Table S1: Boolean logic used to determine tailoring reactions from smCOG
gene annotation. The peptide or polyketide that is modified by the tailoring
reactions is denoted by Xn, both prior and subsequent to the tailoring.
Other abbreviations used in the table: bpg: 1,3-biphopshoglycerate; Pi:
phosphate; Pii: diphosphate; CoA: Coenzyme A.

smCOG logic Reaction

1256 and 1084 bpg + NADH + H+ + Xn → Xn + 2 Pi + NAD+

1002 and 1109 glycine + succinyl-CoA + ATP + Xn → Xn + AMP
+ Pii + CO2 + H2O + CoA

1062 glucose 6-phophate + Xn → Xn + Pi + H+

Addition of glycerate

Tailoring by addition of glycerate from 1,3-biphopshoglycerate was identi-
fied from the presence of the smCOGs 1256 (FkbH like protein) and 1084
(3-oxoacyl-(acyl carrier protein) synthase III). Across all BGCs in MIBiG,
this heuristic provides a correct tailoring reaction in 10 out of 11 cases (Ta-
ble S2). The single error derives from BGC0000082 which still incorporates
a glycerate unit, but lacking the smCOG 1084 annotation.

Incorporation of 2-Amino-3-hydroxycyclopent-2-enone

The tailoring reaction that incorporate 2-Amino-3-hydroxycyclopent-2-enone
synthesized from succinyl-CoA and glycine [12], was identified from the
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Table S2: Listing of BGCs in MIBiG used to determine when the addition
of glycerate is used to tailor the polyketide or peptide. These are all BGCs
in MIBiG containing the FkbH domain and adds glycerate. Of these 11
BGCs, 10 are annotated with the smCOG 1084.

MIBiG ID Product 1084 present Reference

BGC0000001 Abyssomycin Yes [3]
BGC0000036 Chlorothricin Yes [4]
BGC0000082 Kijanimicin No [5]
BGC0000133 Quartromicin Yes [6]
BGC0000140 4H3H2HMe2HF5 Yes [6]
BGC0000162 Tetrocarcin Yes [7]
BGC0000164 Tetronomycin Yes [8]
BGC0001004 Lobophorin B Yes [9]
BGC0001183 Lobophorin A Yes [9]
BGC0001204 Versipelostatin Yes [10]
BGC0001288 Maklamicin Yes [11]

presence of the smCOGs of 1109 (8-amino-7-oxononanoate synthase) and
a neighboring 1002 (AMP-dependent ligase and synthetase). This pair of
smCOG annotations were present in 8 BGCs in MIBiG, of which 5 features
a tailoring reaction that incorporates 2-Amino-3-hydroxycyclopent-2-enone
(Table S3). For one of the BGCs (BGC0001420) the available literature
was not sufficient to make a clear decision about the compound tailoring.
The remaining two BGCs (BGC0000091 and BGC0001063) feature a similar
tailoring reaction where the succinyl-CoA precursor is replaced by several
malonyl-CoA units [13, 14].

Glycosylation

Glycosylation of the peptide or polyketide is identified by the presence of
smCOG 1062 (glycosyltransferase), and as one might expect the number of
incorporated sugar monomers increase with increasing number of smCOG
1062 annotations (Table S4). Based on 40 BGC synthesis pathways that
incorporate sugar monomers (we consider Komodoquinone B as an outlier),
we find a significant correlation between the number of incorporated sugar
monomers and the number of smCOG 1062 Pearson ρ = 0.78, P = 3e −
9. Based on this result the BiGMeC pipeline therefore assumes that all
glycosyltransferases are active, i.e. a 1 to 1 relationship between the number
of smCOG 1062 and active glycosyltransferase tailoring reactions.
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Table S3: Listing of BGCs in MIBiG used to determine when the peptide or
polyketide is tailored by the incorporation of 2-Amino-3-hydroxycyclopent-
2-enone synthesized from succinyl-CoA and glycine [12]. All of these BGCs
are annotated with the smCOG 1002 and 1109 on adjacent genes. The
”Correct” column indicate if these synthesis of the molecules associated
with each BGC incorporates 2-Amino-3-hydroxycyclopent-2-enone.

MIBiG ID Product Correct Reference

BGC0000028 Bafilomycin Yes [15]
BGC0000091 Marineosin No [13]
BGC0000187 Asukamycin Yes [16]
BGC0000213 Colabomycin Yes [17]
BGC0001063 Undecylprodigiosin No [14]
BGC0001298 Annimycin Yes [18]
BGC0001420 Myxochromide Unknown [19]
BGC0001740 Phthoxazolin Yes [20]
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Table S4: Listing of BGCs in MIBiG that incorporates sugar monomers by
glycosyltransferase in one of the tailoring steps. The ”# in BGC” and ”#
in pathway” columns display the number of smCOG 1062 annotations the
BGC and the number of active glycosyltransferases in the synthesis of the
associated compound.

MIBiG ID Product # in BGC # in pathway Reference

BGC0000002 Aculeximycin 5 8 [21]
BGC0000021 Apoptolidin 3 2 [22]
BGC0000033 Calicheamicin 4 4 [23]
BGC0000034 Candicidin 1 1 [24]
BGC0000035 Chalcomycin 2 1 [25]
BGC0000036 Chlorothricin 2 2 [4]
BGC0000042 Cremimycin 1 1 [26]
BGC0000052 ECO-02301 1 1 [27]
BGC0000054 Erythromycin B 2 2 [28]
BGC0000078 Inecidine 2 3 [29]
BGC0000081 Kedarcidin 2 2 [30]
BGC0000082 Kijanimicin 5 5 [5]
BGC0000085 Lankamycin 2 3 [31]
BGC0000092 Megalomicins 3 3 [32]
BGC0000096 Midecamicin 2 1 [33]
BGC0000102 Mycinamicin II 2 1 [34]
BGC0000105 Nanchangmycin 1 1 [35]
BGC0000108 Natamycin 1 1 [36]
BGC0000115 Nystatin A1 1 1 [37]
BGC0000136 Rifamycin 1 1 [38]
BGC0000141 Rubradirin 1 2 [39]
BGC0000148 A83543A 2 2 [40]
BGC0000151 Stambomycin A 1 1 [41]
BGC0000162 Tetrocarcin A 5 4 [7]
BGC0000165 Tiacumicin B 2 2 [42]
BGC0000167 Vicenistatin 1 1 [43]
BGC0000197 Aranciamycin 1 1 [44]
BGC0000198 Arenimycin A/B/C 2 2 [45]
BGC0000199 ArimetamycinA 2 3 [46]
BGC0000199 ArimetamycinB 1 3 [46]
BGC0000199 ArimetamycinC 1 3 [46]
BGC0000200 Arixanthomycin A 1 2 [47]
BGC0000203 BE-7585A 3 1 [48]
BGC0000208 Chelocardin 0 1 [49]
BGC0000210 Chromomycin A3 5 4 [50]
BGC0001183 Lobophorin 3 4 [9]
BGC0001452 Sipanmycin 2 4 [51]
BGC0001522 Auroramycin 2 4 [52]
BGC0001619 Ibomycin 6 7 [53]
BGC0001851 Komodoquinone B 0 5 [54]
BGC0002033 Spiramycin 3 4 [55]
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Rare extender units

The smCOG gene annotations were also leveraged to determine if the genes
encoding enzymes responsible for the synthesis of the rare polyketide pre-
cursor Piimalonyl-CoA were present in the BGC. This synthesis pathway
was identified by the presence of smCOG 1256 (FkbH like protein) and
smCOG 1095 (3-hydroxybutyryl-CoA dehydrogenase), see Table S5. This
heuristic predicts the correct extender unit in 16 of the 24 relevant BGCs.
The relevant BGC are selected from the MIBiG database based those that
contains a gene with the smCOG 1245 and incorporates one or more rare
extender unit. Seven of the 8 incorrect predictions are due to BGCS incor-
porating hydroxymalonyl-ACP and not methoxymalonyl-ACP, and the last
error derives from BGC0000090 which incorporates methoxymalonyl-ACP,
but lacks the smcOG 1095 annotation. Because we are currently not able
to discriminate the synthesis of hydroxymalonyl-CoA from the synthesis of
methoxymalonyl-ACP based on smCOG annoations, the BiGMeC pipeline
assumes that the rare extender unit is methoxymalonyl-ACP. While this
determines the incorporation of the reactions synthesising methoxymalonyl-
ACP [56], the incorporation of methoxymalonyl-ACP as an extender unit
only occurs if this requirement is fulfilled and methoxymalonyl-ACP is the
extender unit as suggested by antiSMASH [57].
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Table S5: List of BGCs in MIBiG that contains a gene with the smCOG
1245 annotation and incorporates a rare extender unit.

MIBiG ID Product Substrate 1095 present Reference

BGC0000020 Actinosynnema Hydroxymalonyl-ACP Yes [58]
BGC0000021 Apoptolidin Methoxymalonyl-ACP Yes [22]
BGC0000028 Bafilomycin Methoxymalonyl-ACP Yes [15]
BGC0000040 Concanamycin A Methoxymalonyl-ACP Yes [59]
BGC0000065 Rustmicin Methoxymalonyl-ACP Yes [60]
BGC0000066 Geldanamycin Methoxymalonyl-ACP Yes [61]
BGC0000074 Herbimycin A Methoxymalonyl-ACP Yes [38]
BGC0000078 Incednine Methoxymalonyl-ACP Yes [29]
BGC0000090 Macbecin Methoxymalonyl-ACP No [62]
BGC0000096 Midecamycin Methoxymalonyl-ACP Yes [33]
BGC0000159 Tautomycin Methoxymalonyl-ACP Yes [63]
BGC0000970 Chondrochloren A Methoxymalonyl-ACP Yes [64]
BGC0001034 Pellasoren Methoxymalonyl-ACP Yes [65]
BGC0001054 Xenocoumacin Hydroxymalonyl-ACP Yes [66]
BGC0001059 Zwittermycin A Hydroxymalonyl-ACP Yes [67]
BGC0001106 Oxazolomycin B Methoxymalonyl-ACP Yes [68]
BGC0001348 JBIR-100 Methoxymalonyl-ACP Yes [69]
BGC0001511 Ansamitocin P-3 Methoxymalonyl-ACP Yes [70]
BGC0001537 Butyrolactol A Hydroxymalonyl-ACP Yes [71]
BGC0001902 Bengamide Hydroxymalonyl-ACP Yes [72]
BGC0001956 Miharamycin A Hydroxymalonyl-ACP Yes [73]
BGC0001957 Amipurimycin Hydroxymalonyl-ACP Yes [73]
BGC0002011 Ansacarbamitocin A Methoxymalonyl-ACP Yes [74]
BGC0002033 Spiramycin Methoxymalonyl-ACP Yes [55]
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M.: Biosynthesis of colabomycin e, a new manumycin-family metabo-
lite, involves an unusual chain-length factor. ChemBioChem 15(9),
1334–1345 (2014)

[18] Kalan, L., Gessner, A., Thaker, M.N., Waglechner, N., Zhu, X., Szaw-
iola, A., Bechthold, A., Wright, G.D., Zechel, D.L.: A cryptic polyene
biosynthetic gene cluster in Streptomyces calvus is expressed upon com-
plementation with a functional blda gene. Chemistry & Biology 20(10),
1214–1224 (2013)

[19] Burgard, C., Zaburannyi, N., Nadmid, S., Maier, J., Jenke-Kodama,
H., Luxenburger, E., Bernauer, H.S., Wenzel, S.C.: Genomics-guided
exploitation of lipopeptide diversity in myxobacteria. ACS Chemical
Biology 12(3), 779–786 (2017)

[20] Suroto, D.A., Kitani, S., Arai, M., Ikeda, H., Nihira, T.: Character-
ization of the biosynthetic gene cluster for cryptic phthoxazolin a in
streptomyces avermitilis. PLOS ONE 13(1), 1–17 (2018)

[21] Rebets, Y., Tokovenko, B., Lushchyk, I., Rückert, C., Zaburannyi, N.,
Bechthold, A., Kalinowski, J., Luzhetskyy, A.: Complete genome se-
quence of producer of the glycopeptide antibiotic aculeximycin kutzne-
ria albida dsm 43870t, a representative of minor genus of pseudonocar-
diaceae. BMC Genomics 15(1), 885 (2014)

[22] Du, Y., Derewacz, D.K., Deguire, S.M., Teske, J., Ravel, J., Sulikowski,
G.A., Bachmann, B.O.: Biosynthesis of the apoptolidins in Nocardiop-
sis sp. fu 40. Tetrahedron 67(35), 6568–6575 (2011)

[23] Zhang, C., Bitto, E., Goff, R.D., Singh, S., Bingman, C.A., Griffith,
B.R., Albermann, C., Phillips Jr, G.N., Thorson, J.S.: Biochemical
and structural insights of the early glycosylation steps in calicheamicin
biosynthesis. Chemistry & biology 15(8), 842–853 (2008)

[24] Gil, J., Campelo-Diez, A.: Candicidin biosynthesis in streptomyces
griseus. Applied Microbiology and Biotechnology 60(6), 633–642
(2003)

[25] Ward, S.L., Hu, Z., Schirmer, A., Reid, R., Revill, W.P., Reeves, C.D.,
Petrakovsky, O.V., Dong, S.D., Katz, L.: Chalcomycin biosynthesis
gene cluster from Streptomyces bikiniensis: Novel features of an unusual
ketolide produced through expression of the chm polyketide synthase in
streptomyces fradiae. Antimicrobial Agents and Chemotherapy 48(12),
4703–4712 (2004)



10

[26] Amagai, K., Takaku, R., Kudo, F., Eguchi, T.: A unique amino transfer
mechanism for constructing the β-amino fatty acid starter unit in the
biosynthesis of the macrolactam antibiotic cremimycin. ChemBioChem
14(15), 1998–2006 (2013)

[27] Zhang, W., Bolla, M.L., Kahne, D., Walsh, C.T.: A three enzyme path-
way for 2-amino-3-hydroxycyclopent-2-enone formation and incorpora-
tion in natural product biosynthesis. Journal of the American Chemical
Society 132(18), 6402–6411 (2010)

[28] Zhang, H., Wang, Y., Wu, J., Skalina, K., Pfeifer, B.A.: Complete
biosynthesis of erythromycin a and designed analogs using e. coli as a
heterologous host. Chemistry & Biology 17(11), 1232–1240 (2010)

[29] Takaishi, M., Kudo, F., Eguchi, T.: Biosynthetic pathway of
24-membered macrolactam glycoside incednine. Tetrahedron 64(28),
6651–6656 (2008)

[30] Lohman, J.R., Huang, S.-X., Horsman, G.P., Dilfer, P.E., Huang, T.,
Chen, Y., Wendt-Pienkowski, E., Shen, B.: Cloning and sequencing of
the kedarcidin biosynthetic gene cluster from streptoalloteichus sp. atcc
53650 revealing new insights into biosynthesis of the enediyne family of
antitumor antibiotics. Molecular bioSystems 9(3), 478–491 (2013)

[31] Arakawa, K., Kodama, K., Tatsuno, S., Ide, S., Kinashi, H.: Analy-
sis of the loading and hydroxylation steps in lankamycin biosynthesis
in streptomyces rochei. Antimicrobial agents and chemotherapy 50(6),
1946–1952 (2006)

[32] Volchegursky, Y., Hu, Z., Katz, L., McDaniel, R.: Biosynthesis of the
anti-parasitic agent megalomicin: transformation of erythromycin to
megalomicin in saccharopolyspora erythraea. Molecular Microbiology
37(4), 752–762 (2000)

[33] Cong, L., Piepersberg, W.: Cloning and Characterization of
Genes Encoded in dTDP-D-mycaminose Biosynthetic Pathway from
a Midecamycin-producing Strain, Streptomyces mycarofaciens. Acta
Biochimica et Biophysica Sinica 39(3), 187–193 (2007)

[34] Anzai, Y., Tsukada, S.-i., Sakai, A., Masuda, R., Harada, C., Domeki,
A., Li, S., Kinoshita, K., Sherman, D., Kato, F.: Function of cy-
tochrome p450 enzymes mycci and mycg in micromonospora griseoru-
bida, a producer of the macrolide antibiotic mycinamicin. Antimicrobial
agents and chemotherapy 56, 3648–56 (2012)

[35] Liu, T., Lin, X., Zhou, X., Deng, Z., Cane, D.E.: Mechanism of
thioesterase-catalyzed chain release in the biosynthesis of the polyether
antibiotic nanchangmycin. Chemistry & biology 15(5), 449–458 (2008)



11

[36] Aparicio, J.F., Barreales, E.G., Payero, T.D., Vicente, C.M., de Pedro,
A., Santos-Aberturas, J.: Biotechnological production and application
of the antibiotic pimaricin: biosynthesis and its regulation. Applied
microbiology and biotechnology 100(1), 61–78 (2016)

[37] Bruheim, P., Borgos, S.E., Tsan, P., Sletta, H., Ellingsen, T., Lancelin,
J.-M., Zotchev, S.: Chemical diversity of polyene macrolides produced
by streptomyces noursei atcc 11455 and recombinant strain erd44 with
genetically altered polyketide synthase nysc. Antimicrobial agents and
chemotherapy 48, 4120–9 (2004)

[38] Chapter 13 - alkaloids derived from an m-c7n unit. In: Funayama, S.,
Cordell, G.A. (eds.) Alkaloids, pp. 219–232. Academic Press, Boston
(2015)

[39] Kim, C.-G., Lamichhane, J., Song, K.-I., Nguyen, V.D., Kim, D.-H.,
Jeong, T.-S., Kang, S.-H., Kim, K.-W., Maharjan, J., Hong, Y.-S.,
Kang, J.S., Yoo, J.-C., Lee, J.-J., Oh, T.-J., Liou, K., Sohng, J.K.:
Biosynthesis of rubradirin as an ansamycin antibiotic from strepto-
myces achromogenes var. rubradiris NRRL3061. Archives of Microbiol-
ogy 189(5), 463–473 (2007)

[40] Evans, D.A., Black, W.C.: Total synthesis of (+)-a83543a [(+)-lepicidin
a]. Journal of the American Chemical Society 115(11), 4497–4513
(1993)

[41] Song, L., Laureti, L., Corre, C., Leblond, P., Aigle, B., Challis, G.L.:
Cytochrome p450-mediated hydroxylation is required for polyketide
macrolactonization in stambomycin biosynthesis. The Journal of An-
tibiotics 67(1), 71–76 (2014)

[42] Xiao, Y., Li, S., Niu, S., Ma, L., Zhang, G., Zhang, H., Zhang, G.,
Ju, J., Zhang, C.: Characterization of tiacumicin b biosynthetic gene
cluster affording diversified tiacumicin analogues and revealing a tai-
loring dihalogenase. Journal of the American Chemical Society 133(4),
1092–1105 (2011)

[43] Ogasawara, Y., Katayama, K., Minami, A., Otsuka, M., Eguchi,
T., Kakinuma, K.: Cloning, sequencing, and functional analysis of
the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in
Streptomyces halstedii. Chemistry & Biology 11(1), 79–86 (2004)

[44] Luzhetskyy, A., Mayer, A., Hoffmann, J., Pelzer, S., Holzenkämper,
M., Schmitt, B., Wohlert, S.-E., Vente, A., Bechthold, A.: Cloning and
heterologous expression of the aranciamycin biosynthetic gene cluster
revealed a new flexible glycosyltransferase. ChemBioChem 8(6), 599–
602 (2007)



12

[45] Jensen, P.R., Moore, B.S., Fenical, W.: The marine actinomycete genus
salinispora: a model organism for secondary metabolite discovery. Nat-
ural product reports 32(5), 738–751 (2015)

[46] Kang, H.-S., Brady, S.F.: Arimetamycin a: Improving clinically rele-
vant families of natural products through sequence-guided screening of
soil metagenomes. Angewandte Chemie International Edition 52(42),
11063–11067 (2013)

[47] Kang, H.-S., Brady, S.F.: Arixanthomycins a-c: Phylogeny-guided
discovery of biologically active edna-derived pentangular polyphenols.
ACS chemical biology 9(6), 1267–1272 (2014)

[48] Sasaki, E., Ogasawara, Y., Liu, H.-w.: A biosynthetic pathway for
be-7585a, a 2-thiosugar-containing angucycline-type natural product.
Journal of the American Chemical Society 132(21), 7405–7417 (2010)
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SUMMARY

Many biosynthetic gene clusters (BGCs) require heterologous expression to
realize their genetic potential, including silent and metagenomic BGCs. Although
the engineered Streptomyces coelicolorM1152 is a widely used host for heterol-
ogous expression of BGCs, a systemic understanding of how its genetic modifica-
tions affect the metabolism is lacking and limiting further development. We per-
formed a comparative analysis of M1152 and its ancestor M145, connecting
information from proteomics, transcriptomics, and cultivation data into a
comprehensive picture of the metabolic differences between these strains.
Instrumental to this comparison was the application of an improved consensus
genome-scale metabolic model (GEM) of S. coelicolor. Although many metabolic
patterns are retained in M1152, we find that this strain suffers from oxidative
stress, possibly caused by increased oxidative metabolism. Furthermore, precur-
sor availability is likely not limiting polyketide production, implying that other
strategies could be beneficial for further development of S. coelicolor for heter-
ologous production of novel compounds.

INTRODUCTION

The bacterium Streptomyces coelicolor has been the de facto model actinomycete for the production of

antibiotics. Being known for over 100 years, the interest in this organism predates the golden age of anti-

biotic research. With its complex life cycle, featuring mycelial growth and differentiation, spore formation,

programmed cell death, and the ability to produce multiple colored secondary metabolites, it has assisted

greatly in our understanding of how streptomycetes sense their surrounding (Hahn et al., 2002; Hutchings

et al., 2004; Nothaft et al., 2010; Rigali et al., 2008; Sola-Landa et al., 2005), activate their developmental

cycle (Chandra and Chater, 2014), and regulate the production of antibiotics (Nieselt et al., 2010; Thomas

et al., 2012). Further aided by the publication of its genome sequence (Bentley et al., 2002), the antibiotic

coelimycin P1 (yellow), produced from the formerly cryptic polyketide gene cluster known as cpk, was

added to this list (Gomez-Escribano et al., 2012). Today, the widespread use of S. coelicolor continues

as a host for heterologous production of biosynthetic gene clusters (BGCs) (Castro et al., 2015; Gomez-Es-

cribano and Bibb, 2011, 2014; Kumelj et al., 2019; Thanapipatsiri et al., 2015; Yin et al., 2015). Heterologous

expression is a powerful strategy for novel compound discovery from BGCs that are either natively silent or

originate from an unculturable source (Nepal and Wang, 2019). These BGCs represent an untapped

resource of microbial biodiversity, nowadays made evident and accessible due to recent advances within

the fields of metagenomics, molecular biology, and bioinformatics (Rutledge and Challis, 2015).

The efficiency of S. coelicolor as a heterologous production host relies on a metabolism that has evolved to

provide the necessary precursors to produce a broad range of complex molecules. Many of these mole-

cules are produced when the strain is experiencing nutrient-limiting conditions that lead to growth cessa-

tion and complex re-modelling of its metabolism (Wentzel et al., 2012a). Metabolic switching in response to

phosphate and glutamate depletion has been studied in detail at a variety of metabolic levels in

S. coelicolor M145 (Nieselt et al., 2010; Thomas et al., 2012; Wentzel et al., 2012b), the most well-known

wild-type strain devoid of the two plasmids SCP1 and SCP2 present in the parent strain S. coelicolor

A3(2) (Kieser et al., 2000). This has unraveled a complex sequence of switching events that ultimately

lead to the biosynthesis of calcium-dependent antibiotic (CDA), and the colored antibiotics actinorhodin
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(Act, blue) and undecylprodigiosin (Red, red). The biosynthesis of coelimycin P1 occurs earlier than the

three other compounds in the growth cycle and appears to be independent of the major metabolic switch

(Nieselt et al., 2010).

To improve S. coelicolorM145 as a host for heterologous BGC expression, strain M1146 was created by the

sequential deletion of its four major BGCs (act, red, cda, and cpk) (Gomez-Escribano and Bibb, 2011). This

should increase precursor availability for the production of a whole range of heterologous products and

provides a cleaner chromatographic background to more easily identify novel compounds. S. coelicolor

M1152 is a derivative of M1146, which besides the deletion of the four main BGCs bears the C1298T point

mutation in the rpoB gene that encodes the beta subunit of RNA polymerase. This mutation was shown to

have strong positive effects on the production of various antibiotics (Gomez-Escribano and Bibb, 2011; Hu

et al., 2002). Up to now, M1152 is a preferred general ‘‘superhost’’ for heterologous BGC expression (Brae-

sel et al., 2019; Castro et al., 2015; Kepplinger et al., 2018; Li et al., 2013; Thanapipatsiri et al., 2015) and is

the starting point for further strain development.

Previous research on themetabolism of S. coelicolorM1152 has been confined to transcriptome profiling of

batch fermentations (Battke et al., 2010; Jager et al., 2011; Liao et al., 2014; Love et al., 2014; Mi et al., 2019),

and further development of this strain as a ‘‘superhost’’ calls for a better understanding of how the genetic

modifications have affected the regulatory system and metabolism of M1152. To this end wemeasure both

protein and transcript levels of both M1152 and its parent strain, M145, at different time steps during batch

fermentation where the metabolic switch is triggered by depletion of phosphate. As enzymes are cata-

lyzingmost metabolic transformations, assessing protein abundance provides information about themeta-

bolic capacity of the organism. Furthermore, we do not only consider the protein abundances in isolation

but also use thesemeasurements to confine fluxes predicted by a genome-scale metabolic model (GEM) of

S. coelicolor to the maximum capacity of the enzymes. By doing so we propagate differences in the abun-

dance of individual enzymes in M145 and M1152 to metabolic rearrangements on the systems level.

The metabolic network in the cell is described in a GEM (Gu et al., 2019). GEMs are valuable resources of

strain-specific knowledge, mathematical models able to predict steady-state flux distributions, and frame-

works for interpretation and integration of different ‘‘omics’’ data, e.g., transcriptomics and proteomics

(Robinson and Nielsen, 2016). The increased interest in using genome-scale models of S. coelicolor is con-

spicuous. Since the first reconstruction in 2005 (Borodina et al., 2005) five GEMs have been published (Alam

et al., 2010; Amara et al., 2018; Kim et al., 2014; Kumelj et al., 2019; Wang et al., 2018), including three in

2018: iKS1317 (Kumelj et al., 2019), Sco4 (Wang et al., 2018), and iAA1259 (Amara et al., 2018). In addition,

as a model organism for the Actinomycetes, the GEMs of S. coelicolor are frequently used as template for

model development of closely related strains (Mohite et al., 2019), such as Streptomyces clavuligerus (Toro

et al., 2018), Saccharopolyspora erythraea (Licona-Cassani et al., 2012) and Streptomyces lividans (Valverde

et al., 2018). The recent updates of the S. coelicolor GEM were developed in parallel by different research

groups: although all groups share the common interest of utilizing a high-quality model for predictions and

data analysis, the prevailing approach of independent parallel development is inefficient. In addition to

duplicating a considerable amount of work, lack of common standards for documentation of progress

and issues, evaluation of model performance, as well as the use of different annotations makes it cumber-

some to compare and merge models.

To increase the rate and quality of model reconstruction, in this study two research groups of the

S. coelicolor GEM community, responsible for two of the latest model updates (Kumelj et al., 2019;

Wang et al., 2018), have joined forces to merge existing GEMs of S. coelicolor into one consensus model

that is publicly hosted on GitHub and can be continuously updated and improved by all members of the

community. Hosting the model on GitHub has many advantages: (1) open access and contribution, (2)

version control, (3) continuous development and integrated quality control with memote (Lieven et al.,

2020), (4) new improvements released instantly (no publication lag time), and (5) complete documentation

of model reconstruction. Such an approach has historic precedents: model reconstruction as a community

effort has been a success for the human GEM (Thiele et al., 2013), baker’s yeast (Aung et al., 2013; Dobson

et al., 2010; Heavner et al., 2012, 2013; Herrgard et al., 2008; Lu et al., 2019), and Chinese hamster ovary cells

(Hefzi et al., 2016). The recent developments in S. coelicolor model and strain improvements in different

research groups prove that it is an opportune time now to join forces in the Streptomycesmodeling efforts

as well.
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RESULTS

Reconstruction of the Consensus Genome-Scale Model of S. Coelicolor

We conducted a stepwise reconstruction of Sco-GEM, the consensus genome-scale metabolic model of

S. coelicolor, while tracking development using Git for version control (Figure 1A, Data S1, Table 1).

A

B

D

F G

E

C

Figure 1. Sco-GEM Development and Analysis

(A) Schematic overview of the various steps in the Sco-GEM reconstruction process.

(B) The overall memote score and number of genes, reactions, and metabolites for the seven published S. coelicolor

GEMs.

(C) Assessment of the model quality by comparing in vivo observations with in silico predictions across in total 241 tests:

accuracy = 0.80; sensitivity = 0.96; specificity = 0.48; Matthews correlation coefficient = 0.53.

(D) The change in Gibbs free energy for 770 reactions that were annotated as either reversible or forward (i.e., forward

irreversible) in the model before curation of reaction reversibility. The histogram is truncated at �105 kJ/mol, and more

negative values are assigned to the leftmost bin.

(E) Analysis and comparison of the directionality and reversibility of reactions before curation and the direction inferred

from the change in Gibbs free energy as estimated by eQuilibrator. Reactions labeled ‘‘forward’’ or ‘‘backward’’ are

irreversible.

(F) Overview of the 369 transport reactions included in Sco-GEM, whereof 42 were curated and 65 were added during this

work. The inner ring categorizes the reactions into nine different subgroups, whereas the outer ring displays the amount

of curated and added reactions within each category. In the outer ring, the sections representing curated and new

reactions are hatched and dotted, respectively.

(G) Comparison of cumulative flux variability distributions in Sco-GEM and EcSco-GEM.
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Sco-GEM is the most comprehensive and highest quality GEM of this organism (Figure 1B), comprising

1,777 genes, 2,612 reactions, 2,073metabolites, and amemote score of 77%, which is indicative of the over-

all model quality (Lieven et al., 2020). Sco-GEM features an accuracy of 96.5% and 74.5% (Figure 1C) in pre-

dicting correct phenotypes for growth environments and knockout mutants, respectively, yielding in total a

Matthews coefficient of correlation of 0.53 with the test data previously described (Kumelj et al., 2019).

With the recently published iKS1317model (Kumelj et al., 2019) as a starting point, Sco-GEMwas first devel-

oped by including genes, reactions, and metabolites from the equally recently published models iAA1259

(Amara et al., 2018) and Sco4 (Wang et al., 2018). The curations from iAA1259 were primarily related to coe-

limycin P1, butyrolactone, xylan, and cellulose pathways, whereas the 377 reactions added to Sco-GEM

from Sco4 were scattered across a large range of different subsystems, covering both primary and second-

ary metabolism (Figure S1). Subsequent to merging the existing S. coelicolor GEMs, we performed a num-

ber of further curations of the model (Figure 1A): including improvement of annotations, both in terms of

coverage and number of different databases, e.g., KEGG (Kanehisa, 2000; Kanehisa et al., 2019), BioCyC

(Karp et al., 2019), ChEBI (Hastings et al., 2016), and MetaNetX (Moretti et al., 2016). All reactions and me-

tabolites have been given identifiers according to the BiGG namespace (King et al., 2016), and all reactions

are categorized into 15 different subsystems, covering 128 different pathways.

The biomass composition was curated to reflect estimated levels of prosthetic groups that are associated

to cellular proteins. Proteomics data, as discussed later, were used to estimate protein levels, while UniProt

(The UniProt Consortium, 2019) provided annotations of proteins with prosthetic groups, which was used to

estimate overall prosthetic group levels (Data S1, Table 2).

Reaction Reversibility Updated for Almost a Third of Queried Reactions

The determination of reaction directionality and reversibility is an important step in a GEM reconstruction

(Thiele and Palsson, 2010). However, the thermodynamic consistency of reactions was not considered in

previous S. coelicolor models. We calculated Gibbs free energy changes for 770 of the 2,612 model reac-

tions (Data S1, Table 3) using eQuilibrator (Flamholz et al., 2012) and found hardly any consistency between

the calculated change in Gibbs free energy and the reversibility previously assigned to the model reactions

(Figure 1D). To address this issue we decided to reassign the reversibility of the model reactions by using a

relatively lenient threshold of �30 kJ/mol to classify a reaction as irreversible (Bar-Even et al., 2012; Feist

et al., 2007), with the intent not to over-constrain the model (Figure 1E). The proposed changes in revers-

ibility were evaluated against growth and knockout data (Kumelj et al., 2019), discarding 61 of the 332 pro-

posed reactions, and consequentially, the flux bounds of 271 reactions were modified (see Transparent

Methods). In addition, all ATP-driven reactions were manually curated and generally assumed irreversible

unless they had an estimated positive change in Gibbs free energy or were known to be reversible. Exam-

ples of this include nucleoside diphosphate kinase (Chakrabarty, 1998) and ATP synthase (Yoshida et al.,

2001). The manual curation of ATP-driven reactions led to a change in reversibility for 56 reactions.

Curation of Transport Reactions

As transport reactions have previously not been extensively curated in S. coelicolormodels, we performed

a thorough curation of transporters by querying various databases and BLAST analysis as detailed in

Methods. This culminated in adding 43 new transport reactions and updating 39 of the 262 existing reac-

tions in Sco-GEM (Figure 1F; Data S1, Table 4). The majority of the transporters comprise primary active

transport proteins and secondary carriers (46%), in accordance with previous work (Getsin et al., 2013).

Most primary active transporters are ATP-binding cassette (ABC) transporters (30%), whereas proton sym-

ports (30%) dominate the secondary carriers.

Development of the Enzyme-Constrained Model EcSco-GEM

To include explicit constraints regarding enzymes catalyzing metabolic reactions, the GECKO formalism

(Sanchez et al., 2017) was applied to consider that catalyzing capacity is constrained by enzyme turnover

rates (kcat) and abundances. The GECKO toolbox modifies the structure of an existing GEM to integrate

turnover rates and proteome data. Consequentially, this constrains the range of estimated fluxes to a bio-

logically feasible range as determined by the amount and efficiency of each enzyme. Note that this

approach regards the maximum catalytic activities but does not consider other kinetic parameters such

as affinity constants. The overall flux variability of the resulting enzyme-constrained model (EcSco-GEM)

is drastically reduced compared with the classic genome-scale model (Figure 1G), particularly due to the
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considerably reduced fraction of reactions that have very high (101) flux variability. As reactions with high

variability result in low certainty in the estimated fluxes, the observed reduction in flux variability is there-

fore a qualitative measure of the increased accuracy achieved by constraining the range of possible fluxes

to those satisfying the limitation in protein allocation.

In our endeavor to describe the metabolic differences between M145 and M1152 we generated in total 17

time- and strain-specific enzyme-constrained models by combining EcSco-GEM with estimated growth,

secretion, and uptake rates, as well as proteome data from cultivations that are detailed and analyzed later

in the article.

Framework for Further Development of Sco-GEM by the Community

The Sco-GEM model is hosted as an open repository as suggested by memote, a recently developed tool

for transparent and collaborative model development (Lieven et al., 2020). The memote tool is incorpo-

rated in the repository through Travis CI and tracks the model development on every change of the model.

Sco-GEM v1.2.0 achieved a memote score of 77%, which is superior to that achieved by any previous model

of S. coelicolor (Figure 1B; Supplemental Information).

Hosting Sco-GEM on GitHub with memote integration ensures continuous quality control and enables

public insight into all aspects of model reconstruction and curation: any user can report errors or suggest

changes through issues and pull requests. As contributions to the model development are fully trackable

and can therefore be credited fairly, Sco-GEM is positioned as a community model that we envision to be

continuously updated and widely used by the S. coelicolor research community. Although the major steps

of model reconstruction have been detailed in the preceding sections, every detail of the process and every

iteration of the model is accessible on the public model repository at https://github.com/SysBioChalmers/

Sco-GEM.

In the remaining parts of the Results section, we have applied Sco-GEM along with transcriptome and pro-

teome data, to study and compare the responses of S. coelicolorM145 andM1152 to phosphate depletion

on a systems level and for the first time provide detailed insight into the distinct physiological features of

engineered ‘‘superhost’’ strain M1152, which will be of value for its further development.

Random Sampling of Enzyme-Constrained GEMs Capture Metabolic Rearrangements in

Response to Phosphate Depletion in M145

To evaluate whether the (Ec)Sco-GEMmodels can simulate behaviors of S. coelicolormetabolism, we analyzed

time course sampled cultivations of secondary metabolite-producing strain M145 using the generated models.

For this purpose, S. coelicolor M145 was cultivated in batch fermentations using standardized protocols re-

ported earlier (Wentzel et al., 2012a). Cultures were sampled for ‘‘omics’’ data, as well as substrate utilization

and secondary metabolite measurements to identify regulatory, proteomic, and metabolic changes during

the metabolic switch. The online and offline measurements showed that phosphate depletion in the cultivation

mediumwas reached approximately 35 h after inoculation. Shortly after, the culture growth ceased, and first Red

and subsequently Act were detected in the culture medium (Figures 2A and 2B). Act levels were determined by

measuring the amount of total blue pigments because this covers both the intracellular and secreted variants of

actinorhodin, and is considered to be the preferredmethod (Bystrykh et al., 1996; Wentzel et al., 2012a). BothD-

glucose and L-glutamate were consumed concomitantly, and their consumption continued after phosphate

depletion, whereas both remained in excess until the end of cultivation. Note that Streptomyces can utilize intra-

cellular phosphate storages after themedium is phosphate depleted (Smirnov et al., 2015). The RNA sequencing

(RNA-seq) and untargeted proteomic data were analyzed in the light of previous studies (Nieselt et al., 2010;

Thomas et al., 2012) and were in good agreement with data previously obtained from microarrays or targeted

proteomics (Alam et al., 2010; Nieselt et al., 2010) (Figures 2C and S2). This confirmed the high reproducibility of

the experiments across independent cultivations and high reliability of the chosen cultivation and analytic pro-

cedures (Figure 2).

The proteome data and calculated uptake/secretion rates (Table S1) were incorporated into EcSco-GEM to

yield time-specific metabolic models of M145, giving insight on the changes occurring in the metabolic ac-

tivity of different pathways during batch cultivation. Metabolic fluxes were estimated using an unbiased

approach of random sampling, as alternative to optimization of a well-defined cellular objective used in

flux balance analysis (Orth et al., 2010). It is possible that S. coelicolor is wired to maximize its growth
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rate before phosphate depletion, but after the metabolic switch, it is difficult to define a clear cellular

objective. We applied an approach that samples the vertices of the solution space (Bordel et al., 2010)

and used their mean values to compare themetabolic fluxes between the two strains and between different

time points. The variation in predicted fluxes through different pathways in M145 is an initial validation of

the approach (Figure 2D): the most drastic change in fluxes occur in response to phosphate depletion, in

agreement with observations in the transcriptome, metabolome, and proteome (Nieselt et al., 2010;

Thomas et al., 2012; Wentzel et al., 2012b).

The response to phosphate depletion from the medium is achieved by a set of genes, positively regulated

by PhoP, that are involved in phosphate scavenging, uptake, and saving (Martin et al., 2012; Martin-Martin
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Figure 2. Batch Cultivation of S. Coelicolor M145 and the Effect of Phosphate Depletion

(A and B) Compounds produced (A) and consumed (B) during batch fermentation of S. coelicolor M145. Time points for

sampling for transcriptome and proteome analysis are indicated with red triangles. The dashed vertical line indicates

when phosphate in the medium has been depleted. Error bars are standard deviations of three biological replicates.

CDW, cell dry weight; Red, undecylprodigiosin; TBP, total blue pigments/actinorhodins; CO2, volume-corrected

respiration; D-Glc, D-glucose; L-Glu, L-glutamate; PO4, phosphate.

(C) Comparison of previously published microarray data (Nieselt et al., 2010) and RNA-seq data (this study) for genes

previously found to respond to phosphate depletion (Nieselt et al., 2010). The transparent lines correspond to individual

genes, whereas the bold lines represent the average expression level for each dataset.

(D) Clustered heatmap of CO2-normalized Z scores for each of the top 10 varying pathways plus the pathways for the four

major BGCs in M145, as revealed by simulations with the proteomics-integrated EcSco-GEM model. The pathways are

sorted based on hierarchical clustering to facilitate visual interpretation of similarity between pathways. The dashed

vertical line indicates the time point of the metabolic switch.

(E) RNA-seq data of the four major BGCs show the onset of biosynthesis of actinorhodin (Act), calcium-dependent

antibiotic (CDA), coelimycin P1 (Cpk), and undecylprodigiosin (Red) at different time points during the batch

fermentations of M145.
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et al., 2018; Sola-Landa et al., 2003). In our cultivations the metabolic switch can be readily identified from

the RNA-seq data by the rapid upregulation of this regulon after 35 h of cultivation in M145 (Figure 2C),

thereby corroborating the model simulations (Figure 2D) and providing a more detailed picture of the un-

derlying regulation. PhoP also represses nitrogen assimilation (Martin et al., 2017), which can partly explain

the change in amino acids metabolism after phosphate depletion (Figure 2D). Indeed, from the RNA-seq

data we find that glutamate import, the glutamate sensing system gluR-gluK (Li et al., 2017), glnR (Fink

et al., 2002), and glnA are downregulated immediately subsequent to phosphate depletion (Figure S3).

As PhoP is also known to regulate negatively the biosynthesis of secondary metabolites, the switching of

its expression likely delays these pathways (Martin, 2004; Martin et al., 2017). However, after 37 h of culti-

vation the upregulation of the cda and red genes was observed, whereas that of the act genes was initiated

at 41 h (Figure 2E). Production of Red and Act was measurable in the culture medium after 41 and 49 h of

cultivation, respectively (Figure 2A). The enzyme-constrained models predict an immediate increase in

fluxes through the biosynthetic pathways for the four main compounds Act, Red, CDA, and coelimycin

P1 after the metabolic switch (Figure 2D).

The Onset of Secondary Metabolism Is Strongly Correlated with an Increase in Oxidative
Phosphorylation and a Decrease in Fatty Acid Biosynthesis in M145

The metabolic switch was shown to be correlated with an enhanced degradation of branched-chain amino

acids (valine, leucine, and isoleucine), an increase in oxidative phosphorylation, and a decrease in fatty acid

biosynthesis (Figures 2D and S4). An active oxidative phosphorylation relies on an active tricarboxylic acid

(TCA) cycle that generates reduced co-factors whose re-oxidation by the respiratory chain generates a pro-

ton gradient that drives ATP synthesis by the ATP synthase. The feeding of the TCA cycle requires acetyl-

CoA, as well as nitrogen. Nitrogen likely originates from degradation of glutamate and branched-chain

amino acids, whereas acetyl-CoA likely originates from glycolysis, as well as from the degradation of these

amino acids as previously demonstrated (Stirrett et al., 2009). Indeed, the model predicts an increased flux

through citrate synthase feeding acetyl-CoA into the TCA cycle (Figure S5A). The predicted increase in

oxidative phosphorylation is supported by the RNA-seq data showing upregulation of enzymes belonging

to the respiratory chain (Figure S5B). This is consistent with the clear correlation previously reported be-

tween high ATP/ADP ratio, resulting from an active oxidative phosphorylation, and actinorhodin produc-

tion (Esnault et al., 2017). Furthermore, the consumption of acetyl-CoA by the TCA cycle to support the

oxidative metabolism logically impairs fatty acids biosynthesis (Esnault et al., 2017).

The pentose phosphate pathway provides the main redox cofactor NADPH for polyketide biosynthesis, as

well as to combat oxidative stress, and its model-predicted flux increase upon initiation of polyketide syn-

thesis (Figure 2D) is in agreement with previous studies (Borodina et al., 2008; Jonsbu et al., 2001). A clear

positive correlation was also noticed between the biosynthesis of alanine, aspartate, and glutamate, which

are precursors for CDA and/or coelimycin P1 (Figure 2D), and the biosynthesis of these antibiotics. Similar

observations weremade in the antibiotic-producing Amycolatopsis sp. (Gallo et al., 2010). Our EcSco-GEM

model proved to be in good agreement with previously reported findings, indicating that it is able to cap-

ture S. coelicolor metabolic behavior.

Model-Assisted Characterization of Engineered S. Coelicolor M1152 and Its Responses to

Phosphate Depletion

As detailed earlier, EcSco-GEM shed a new light on the metabolic switch in secondary metabolite-produc-

ing strain M145. S. coelicolorM1152 (Gomez-Escribano and Bibb, 2011) is an M145 derivative devoid of the

four major BGCs and bearing a point mutation in the rpoB gene. A better systemic understanding of M1152

metabolism would benefit to its further development as a performing host. To do so, a comparative anal-

ysis of gene expression levels and metabolic fluxes was carried out in the strains M145 and M1152.

Batch cultivations of M1152 were performed using identical conditions and comparable sampling regimes

as for M145 reported earlier. This enabled a direct comparison of the two strains at a systems level,

revealing both expected and unexpected effects of the strains’ genetic differences (Figure 3). As antici-

pated, the products of the Cpk, CDA, Red, and Act biosynthetic pathways were undetectable in M1152

(Figure 3A). As previously observed (Gomez-Escribano and Bibb, 2011), the growth rate of M1152 is

reduced compared with M145 (0.15 h�1 versus 0.21 h�1 in the initial exponential growth phase), delaying

phosphate depletion by M1152 to 47 h after inoculation (Figure 3B), 12 h after M145 (Figure 2B).
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The sampling time points for proteome and transcriptome were adjusted accordingly (Figure 3B), enabling

pairwise comparison of measurements between the two strains. Genes responsive to phosphate depletion,

members of the PhoP regulon (Nieselt et al., 2010), were used to align the different sample datasets for

M145 or M1152 (Figure 3C). Principle-component analysis of the proteome data confirms high consistency

between corresponding biological replicates and incremental changes between sample points for both

M145 and M1152 (mainly explained by principal component 1 (PC1): 18.6% variance, Figure 3E). A clear

strain-dependent clustering of the data (PC2: 15.5% variance) indicates globally significant differences at

the protein level. EcSco-GEM was subsequently used to create time-specific metabolic models from pro-

teome data and estimated rates (Table S2) and predict metabolic changes in M1152. Interestingly we find

that most patterns in M145 are retained in M1152 (Figure 3D): fatty acid and nucleotide biosynthesis is still

downregulated after phosphate depletion, and similar trends of upregulation at later time points are

observed for oxidative phosphorylation, glycine, serine and threonine, and pyruvate metabolism. It is
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Figure 3. Batch Cultivation of S. Coelicolor M1152

(A and B) Compounds produced (A) and consumed (B) during batch fermentation of S. coelicolorM1152. Time points for

sampling for transcriptome and proteome analysis are indicated with red triangles. The dashed vertical line indicates

when phosphate in the medium has been depleted. Error bars are standard deviations of three biological replicates.

CDW, cell dry weight; Red, undecylprodigiosin; TBP, total blue pigments/actinorhodins; CO2, volume-corrected

respiration; D-Glc, D-glucose; L-Glu, L-glutamate; PO4, phosphate.

(C) Alignment of sample time points of M145 and M1152 cultivations based on the expression profiles of genes that were

earlier found to respond to phosphate depletion with respect to the metabolic switch (Nieselt et al., 2010).

(D) Principle-component analysis of the proteomics data for M145 (triangles) and M1152 (circles), for each time point and

culture. The first principal component separates the time points, whereas the second principal component separates the

two strains.

(E) CO2-normalized Z scores of pathway fluxes predicted by EcSco-GEM for 10 of the most varying pathways in M145 and

M1152. To make this heatmap comparable to the results for M145 (Figure 2D), the data are standardized for both strains

simultaneously and the row order is identical.
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striking that the upregulation of the branched-chain amino acid degradation and the alanine, aspartate,

and glutamate metabolism seen as a response to phosphate depletion in M145 are absent in M1152.

The different glutamate and glucose consumption rates of M145 andM1152 (Figures 4A and 4B) resulted in

substantial metabolic differences between the two strains before phosphate depletion. During cultivation
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Figure 4. Predicted Carbon Fluxes in M145 and M1152

(A) The ratio between estimated uptake rates of glucose and glutamate for each sample time point for M145 and M145

shows that M1152 acquires a smaller part of its carbon from glucose compared with M145.

(B) Bar chart showing CO2-normalized fluxes for the second sampling time point for M145 and M1152, i.e., after 29 and 41

h, respectively. There is a clear difference in the uptake of glucose and production of acetate, whereas the rates are

comparable for the consumption of glutamate and secretion of ammonium.

(C) Comparison of predicted fluxes for the second sampling time points shows clear differences between the two strains

in their relative utilization of the glycolysis and TCA cycle. The strength of the color of the lines corresponds to the flux

difference between the strains; green reactions have higher flux in M1152, and red reactions have higher flux in M145.
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on SSBM-P medium, where glutamate is the sole nitrogen source, glucose and glutamate are co-

consumed. M1152, as M1146 (Esnault et al., 2017), has an increased growth yield on glucose compared

with M145 (Figure S6). It thus obtains a larger share of its carbon from glutamate (Figures 4A and 4B)

and has consequently also a higher nitrogen availability than M145. The increased nitrogen availability

does, however, not increase the secretion of ammonium, indicating that the consumed nitrogen is directed

toward growth or production of secondary metabolites. A reduced flux through glycolysis has also been

reported previously for strain M1146 (Coze et al., 2013). This might be an effect of the predicted increased

concentration of ATP in M1146 compared with M145, which inhibits glucose uptake and phosphofructoki-

nase (Coze et al., 2013; Esnault et al., 2017). As Act was proposed to act as an electron acceptor reducing

the efficiency of the oxidative phosphorylation, it is suggested that the lack of Act in M1146 causes the

elevated ATP levels (Esnault et al., 2017). However, we find the largest difference in glycolytic flux at early

time points, before phosphate depletion and Act production inM145, proving that Act itself cannot explain

this observation.

The EcSco-GEM predicts the consequences of the reduced glucose uptake of M1152 on its central carbon

metabolism, as displayed by mapping relative reaction fluxes from the second sampling time point onto a

map of the central carbon metabolism in Streptomyces (Figure 4C). The map is based on the reaction

network in Sco-GEM and created using Escher (King et al., 2015). A less-active glycolysis in M1152 than

in M145 leads to a lower carbon flow toward acetyl-CoA and thus lower excretion of acetate compared

with M145 (Figure 4B). Furthermore, EcSco-GEM reveals an increased flux from glutamate to alpha-keto-

glutarate. Indeed, a fraction of the pool of oxaloacetate might be converted into alpha-ketoglutarate by

aspartate transaminase to feed the TCA cycle. The rest might be converted into phosphoenolpyruvate

(PEP) by PEP carboxykinase for gluconeogenesis because PEP carboxykinase was shown to carry higher

fluxes in M1152 than in M145 (Figure 4C).

As recent studies have demonstrated a negative correlation and a competition for common precursors be-

tween secondary metabolite and triacylglycerol (TAG) biosynthesis in S. lividans and S. coelicolor (Craney

et al., 2012; Esnault et al., 2017; Millan-Oropeza et al., 2017), one can speculate that the acetyl-CoA/ma-

lonyl-CoA units yielded by glycolysis for the biosynthesis of antibiotics in M145 are being used for

enhanced growth and/or fatty acids and TAG biosynthesis in M1152. However, this is likely not the case,

as M1152 has rather a reduced growth rate compared withM145, and fatty acid biosynthesis remains down-

regulated after the switch (Figure 5). Malonyl-CoA is predominantly shuttled toward fatty acid biosynthesis

throughmalonyl-CoA-ACP transacylase, and this consumption seems to be well balanced by the amount of

malonyl-CoA produced by acetyl-CoA carboxylase. It is noteworthy that the flux toward this acetyl-CoA/

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Reaction
ACCOAC
ACCOAC_1
Strain
M145
M1152

Sample time point

Malonyl-CoA production

Sample time point

Malonyl-CoA consumption
10−2

10−3

10−4

10−5

10−6

10−7

Reaction
Act
MCOATA
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CDA
THYDNAPS
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M1152

Figure 5. Production and Consumption of Malonyl-CoA as the Branching Point between Fatty Acid Biosynthesis

and Production of Polyketides

Both panels display CO2-normalized fluxes for both M145 and M1152 for all sampling time points as predicted by EcSco-

GEM. The left panel shows the sources of malonyl-CoA, namely, acetyl-CoA carboxylase (ACCOAT; blue) and acetyl-CoA

carboxytransferase (ACCOAT_1; orange). We observe a downregulation of the malonyl-CoA production after the

metabolic switch (between time points 3 and 4) in both strains. The right panel presents reactions consuming malonyl-

CoA. The consumption is dominated by malonyl-CoA-ACP transacylase (MCOATA) leading to biosynthesis of fatty acids.

The other drains for malonyl-CoA are the pathways encoded by the four major BGCs (Act, Cpk, Red, and CDA) in addition

to biflaviolin synthase (THYDNAPS).
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malonyl-CoA drain is 3- to 6-fold larger than the total flux going into secondary metabolite biosynthesis,

even after the metabolic switch. We thus propose that together with enhanced nitrogen availability,

acetyl-CoA made available from the deletion of these BGCs is used to feed the TCA cycle to support

the oxidative metabolism in M1152. This would generate oxidative stress whose toxic effects might be

responsible for the growth delay of this strain.

Transcriptome Analysis Reveals Differential Expression of Global Regulators

Although the proteome data are an integral part of the EcSco-GEM models, RNA-seq data were used to

both verify the trends and to gain further insights into the regulatory changes that are not captured by the

metabolic models. As the proteomic data, the RNA-seq data showed large global differences between

M1152 and M145, revealing 499 differentially expressed genes with a significance threshold of p < 0.01.

Unsupervised clustering of the significantly changed genes reveal differences in regulatory systems related

to redox regulation, signaling, and secondary metabolism. The significantly changed genes were clustered

into seven groups with K-means clustering, with clusters 1–3 containing genes that are upregulated in

M1152 compared with M145, and clusters 4–7 vice versa (Figure S7A; Data S2). A Gene Ontology (Ash-

burner et al., 2000; The Gene Ontology Consortium, 2019) enrichment analysis of the seven clusters was

conducted to identify upregulated processes in each of the two strains (Figure S8, cf. Figure S7A).

The enriched processes upregulated in M1152 point to increased oxidative stress (Figure S8): antioxidant

and peroxidase activity (SCO2633 [sodF]; SCO4834-35) in addition to biosynthesis of carotenoid

(SCO0185–SCO0188), a known antioxidant (Latifi et al., 2009; Stahl and Sies, 2003). The putative proteins

within the cytochrome-P450 family (SCO7416–SCO7422) found in cluster 1 might be linked not only to

increased oxidative stress (Zangar et al., 2004) but also to oxidation of precursors used for the synthesis

of macrolides (Lamb et al., 2003). Indeed, by comparing the time series expression levels for genes related

to oxidative stress we observe that the majority of genes related to oxidative stress are upregulated in

M1152 (Figure 6). These changes correlate to a more active oxidative metabolism, TCA cycle, and oxidative

stress as predicted by Ec-ScoGEM (Figure 4).

In cluster 2 we find scbA (SCO6266) and its downstream gene scbC (SCO6267), which stands out by being

almost 6-fold upregulated in M1152. This high expression level is likely due to the deletion of scbR2

(SCO6286), the last gene selected to be part of the cpk BGC (Bednarz et al., 2019). Besides regulation of

SCO2529
SCO0187
SCO0186
SCO0185
SCO0188
SCO2633
SCO4834
SCO4835
SCO7418
SCO7417
SCO7422
SCO7416
SCO7419
SCO7420
SCO7421
SCO7590
SCO0666
SCO6204
SCO2885
SCO5254
SCO0560
SCO0999
SCO0379

14
12
10
8
6

21
h

29
h

33
h

37
h

41
h

45
h

49
h

53
h

57
h

33
h

41
h

45
h

49
h

53
h

57
h

61
h

65
h

69
h

M145 M1152

log2 normalized
expression

Superoxide dismutase
Catalase
Peroxidase
Carotenoid
Cytochrome P450
Alkyl hydroperoxide
reductase

Gene annotation

Figure 6. Heatmap Displaying Log-Transformed RNA-Seq Data of Genes Associated with Oxidative Stress

The genes included are related to oxidative stress and either present in Sco-GEM or within the 499 differentially

expressed genes. These genes are categorized based on their functional annotation to distinguish differences and

similarities between these functional groups. To further enhance visual interpretation the genes are ordered based on

hierarchical clustering to align genes with similar expression profiles across M145 and M1152 next to each other.
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the cpk cluster, ScbR2 binds upstream of several global regulators of development and secondary meta-

bolism, including AfsK, SigR, NagE2, AtrA, AdpA, and ArgR (Li et al., 2015). It also acts together with ScbR

to regulate ScbA, which produces the y-butyrolactone SCB1. However, when looking at the genes regu-

lated by ScbR (Li et al., 2015), we only observe a clear difference in expression for genes regulated by

AfsR (phosphorylated by AfsK) (Horinouchi, 2003; Lee et al., 2002), whereas this is not the case for genes

regulated by ArgR, AdpA, or ScbR itself (Figures S5C-S5F).

Among the genes upregulated in M145, in cluster 4 we find genes related to the redox-regulated transcrip-

tion factor SoxR (Naseer et al., 2014), and a similar pattern is observed for the entire SoxR regulon (Fig-

ure S7B). SoxR is known to react directly to the presence of actinorhodin (Dela Cruz et al., 2010; Shin

et al., 2011), and indeed, in M145 this group of genes follows the production profile of actinorhodin,

whereas their expression remains low in M1152 as Act is not produced. The benzoquinone Act, as electron

acceptor, is thought to reduce respiration efficiency and thus energy charge, as well as to combat oxidative

stress (Esnault et al., 2017). Consistently, the RNA-seq data revealed that the ATP-synthase gene cluster

(SCO5366–SCO5374) was upregulated almost 2-fold in M1152 compared with M145, most prominently

in the stationary phase during Act production (Figure S7C). This agrees with observations in the M1146

strain (Coze et al., 2013). Cluster 4 also contains the genes directly up- and downstream of the deleted ac-

tinorhodin BGC in M1152 (SCO5071–SCO5072, encoding 3-hydroxyacyl-CoA dehydrogenase, and

SCO5091–SCO5092, encoding a two-component flavin-dependent monooxygenase system) (Valton

et al., 2008). In clusters 5, 6, and 7 we find genes with reduced expression in M1152, and the enriched pro-

cesses are related to cellular and iron ion homeostasis, development, signaling, and morphology. This cor-

responds to the delayed sporulation observed for M1152 (Gomez-Escribano and Bibb, 2011).

Elevated Expression of Ribosomal Proteins in M1152 after Phosphate Depletion

An increased transcription of genes encoding ribosomal proteins could be observed in M1152 after phosphate

depletion (Figure S7D). The rpoB mutation of the RNA polymerase present in M1152 is thought to induce a

conformational change mimicking the binding of guanosine tetraphosphate (ppGpp) to this enzyme (Hu

et al., 2002). ppGpp is synthesized in response to nutritional stress and reduces the transcription of genes related

to active growth, such as genes encoding ribosomal RNAs and ribosomal proteins (Burgos et al., 2017), whereas

it upregulates those involved in development/differentiation and antibiotic production (Hesketh et al., 2007; Sri-

vatsan and Wang, 2008). In consequence the upregulation of ribosomal proteins was unexpected in M1152,

especially because the expression of the ppGpp regulon was not found to be significantly changed in M1152

(Figure S5G and S5H). We hypothesize that the ribosomal upregulation originates from the higher ATP content

of M1152 compared with M145 post phosphate depletion, as high nucleoside triphosphate levels are known to

have a positive impact on ribosome synthesis (Gaal et al., 1997). Such difference in ribosomal protein expression

is mainly seen in the antibiotic production phase and correlated with production of Act in M145, which has a

negative impact on the energetic state of the cell (Esnault et al., 2017).

Reduced Production of the Polyketide Germicidin in M1152

One could reasonably anticipate that the production of a secondary metabolite would increase if other

drains competing for same precursor compounds were removed from the organism by gene deletion.

However, the production rate of the polyketides germicidin A and B (Chemler et al., 2012), autologous

to bothM145 andM1152, were reduced inM1152 by 92% and 82% for germicidin A and B, respectively (Fig-

ure 7). This could be explained by the more active oxidative metabolism of M1152 compared with M145, as

suggested by the enzyme-constrained model (Figure 4) and supported by the upregulation of genes asso-

ciated with oxidative stress (Figure 6). In M1152 the pool of acetyl-CoA rather feeds the TCA cycle instead

of being directed toward germicidin biosynthesis.

To further elucidate the cause of the reduced production in M1152, we also measured germicidin produc-

tion in the intermediate strain M1146 (Figures 7 and S7E), which does not feature the rpoBmutation but is

missing the four BGCs also deleted in M1152 (Gomez-Escribano and Bibb, 2011). The production rate of

germicidin A and B in M1146 was found to be reduced by 27% and 25%, respectively, compared with

M145. When compared with the strong reduction in germicidin production that can be assigned to the

rpoBmutation in M1152, removal of only the four BGCs in M1146 has a moderate effect on germicidin pro-

duction. This conforms with the minor contribution of the BGCs compared with fatty acid biosynthesis on

the total consumption of malonyl-CoA (Figure 5). Nonetheless, it remains contradictory that the removal of

polyketide precursor drains negatively impacts the production of other polyketides.
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DISCUSSION

In this work, we carried out a multi-omics study to compare the metabolic changes of Streptomyces coeli-

color M145 and the BGC deletion mutant M1152 during batch fermentation. The defined cultivation me-

dium used in this work was chosen because it supports sufficient growth and a delayed, well-defined onset

of secondary metabolism, necessary to study the metabolic switch (Wentzel et al., 2012a). We aimed at

defining the metabolic features differing between the two strains, both during exponential growth and sta-

tionary phase after phosphate depletion.

To achieve this from a systems biology perspective, we combined time course sampled cultivation and

transcriptome analysis with enzyme-constrained genome-scale models generated with proteome data.

Such genome-scale models are extensively used to connect transcriptome and proteome data to meta-

bolic fluxes. Leveraging metabolic simulations to contextualize transcriptional changes is mainly impacted

by the quality of the computational model used. Here, two teams joined efforts to improve a consensus

model of S. coelicolor, yielding a comprehensive model useful for the scientific community.

Genome-Scale Models Provide Hypothesis for Slow Growth of M1152

The reduced growth rate of M1152 is correlated with reduced glucose uptake and enhanced glutamate up-

take compared with M145. This is expected to lead to a less active glycolysis but a more active TCA cycle,

and thus, a more active oxidative metabolism in M1152 compared with M145. An active oxidative meta-

bolism is known to generate oxidative stress, and indeed, the in vivo data, as well as the genome-scale

model, predict an increased oxidative stress in M1152. The toxicity of oxidative stress might, at least in

part, be responsible for the growth delay of M1152, whereas the rpoBmutation may add to this phenotype,

because one of the functions of the ppGpp-associated RNA polymerase is to promote a growth arrest in

conditions of nutritional stress.

Further Development May Improve M1152 as Host for Heterologous Expression

The strain M1152 has several advantages as a host for heterologous production of secondary metabolites. The

deletion of the four major BGCs not only removes presumed competing drains for valuable precursors but

also generates a clean background to ease the identification of novel products by mass spectrometry. M1152

has already been proved to be more efficient than M145 and M1146 in heterologous production of the nitro-

gen-containing antibiotics chloramphenicol and congocidine, as well as Act production from reintroduction of

its BGC (Gomez-Escribano and Bibb, 2011). Strains M1146 and M1152 produce, respectively, 3- to 5-fold and

20- to 40-fold more chloramphenicol and congocidine from respective heterologous clusters thanM145, a clear

demonstration of the huge impact onproductiondue to the rpoBmutation.Although this contrastswithourdata

Figure 7. Concentrations of Germicidin A and B Produced by M145, M1146, and M1152

The concentrations are normalized by the biomass of each strain. The shaded regions display the uncertainty range (G1

standard deviation) based on three replicate cultivations. Note that the growth rate is different between the strains,

displayed by the vertical lines representing phosphate depletion at 35, 38, and 47 h for M145, M1146, and M1152,

respectively.
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showing thatM1152 has the lowest production of germicidin, it is relevant to note that chloramphenicol and con-

gocidine are non-ribosomal peptide synthases relying on amino acids rather than malonyl-CoA as precursors.

Although our data show reduced degradation of branched-chain amino acids andmetabolismof alanine, aspar-

tate, and glutamate as the clearest metabolic divergence upon phosphate depletion in M1152, as congocidine

andchloramphenicol arebasedonaromaticaminoacids the connection to increasedproductionof theseNRPs is

not obvious. Another option is that the increased oxidativemetabolism inM1152 providesmore redox cofactors

to drive the synthesis of thesemolecules. If competition for valuable precursors was rate limiting, the absence of

the polyketides actinorhodin and coelimycin P1 should at least enhance the production of germicidin, all being

dependent on malonyl-CoA. Moreover, differences in cultivation media further convolute cross-study compari-

sons: theaforementionedstudyuseacomplexgrowthmedium,whereasweusedadefinedmediumwithglucose

and glutamate, which has previously been optimized for studying the metabolic switch (Wentzel et al., 2012a).

Furthermore, (re-)introduction of a (secondary) copy of germicidin synthase gene gcs in strains M1152 and

M1317—derived from M1152 by additional removal of three type III PKS genes including gcs—gave a 7.8-

and 10.7-fold increase in germicidin production, respectively, compared with M1152 with only the native

copy of gcs (Thanapipatsiri et al., 2015). Thus, the largest increase in production is not achieved by removal

of competing precursor drains, but rather effected by the re-introduction of gcs, probably because expres-

sion of the inserted gene is not constrained by the same regulatory mechanism as the native gene.

Although earlier work has suggested a competition for common precursors between fatty acids and sec-

ondary metabolites biosynthesis (Craney et al., 2012), our results suggest that other approaches than dele-

tion of competing precursor drains may be more efficient in the development of an optimized expression

host, and it seems likely that different classes of BGCs may require different hosts for maximal production.

Our comparative analysis of M145 and M1152 supports this development, not only as a systemic descrip-

tion connecting non-trivial associations between phenotypic, genetic, and metabolic differences but also

by highlighting cellular processes that seem to be out of balance in M1152. These include upregulation of

ribosomal genes, most likely an effect of the rpoB mutation, and increased oxidative metabolism and

oxidative stress. As Act itself works as an electron acceptor one may hypothesize that its presence could

relieve some of this stress. Another approach is to reintroduce scbR2 to avoid influencing the related reg-

ulators of development and secondary metabolism.

Although S. coelicolor seems to have a complex and not fully elucidated regulatory system, several studies

have shown that manipulation of regulatory genes can affect the production of secondary metabolites

(Jones et al., 2011; Kim et al., 2003; Okamoto et al., 2003; Rodriguez et al., 2012). The complex regulation

of secondary metabolite biosynthesis makes rational strain design difficult (Liu et al., 2013), but black-box

approaches including random mutations and screening are still viable approaches for strain development

(van den Berg et al., 2008; Crook and Alper, 2012). The Sco-GEM can aid this development by predicting

the impact of these genetic alterations and to interpret ‘‘omics’’ data.

Limitations of the Study

We have performed a thorough comparison, of S. coelicolor M1145 and M1152, but to fully attribute

changes in metabolism to the different genetic modifications as well as to unravel possible epistatic inter-

actions we believe that a comprehensive analysis that also includes the intermediate strain M1146, and

possibly also an M145 strain featuring only the rpoB mutation (Xu et al., 2002), will be necessary.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Eduard J Kerkhoven (eduardk@chalmers.se).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The models and scripts generated during this study are available at GitHub (https://github.com/

SysBioChalmers/Sco-GEM). Here, the latest version of the Sco-GEM is available in both YAML and
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SBML level 3 Version 1. In addition, users can contribute to further model development by posting issues or

suggest changes. The proteomics data are available from ProteomeXchange: PXD013178 via the PRIDE

partner repository (Perez-Riverol et al., 2019). Normalized proteome data are also available in Data S3.

The transcriptomics data are available from NCBI GEO: GSE132487 (M145) and GSE132488 (M1152).

Normalized counts are also found in Data S4.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101525.
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Supplemental figures 
 

Figure S1: Reaction subsystems and origin, related to Figure 1A. The number of reactions in 

Sco-GEM in each of the 15 subsystems, and from which model they originate from. The other 

reactions (orange) are added during reconstruction of Sco-GEM.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2: Gene clusters 

associated with metabolic 

switch, related to Figure 2C. 

RNA-seq (left column) and 

proteomics (right column) 

from M145 of the 8 gene 

clusters associated with the 

metabolic switch as previously 

identified (Nieselt et al., 2010).  

The 8 clusters are: A) genes 

related to ribosomal proteins; 

B) genes related to nitrogen 

metabolism; C) Cpk gene 

cluster; D) genes related to 

development; E) genes 

upregulated in response to 

phosphate depletion; F) genes 

involved in synthesis of 

phosphate-free polymers; G) 

Act gene cluster; H) Red gene 

cluster.   

 

 

 

 

 

 

 



 

Figure S3: Log-transformed expression levels of genes associated with nitrogen metabolism, 

related to Figure 2D. The order of the genes is determined by hierarchical clustering to align 

genes with similar expression profiles next to each other. From the log2-transformed RNA-seq 

data we observe that glutamate import (SCO5774-5777), the glutamate sensing system gluR-

gluK (SCO5778 and SCO57779), glnR (SCO4159) and glnA (SCO2198) are downregulated 

subsequent to phosphate depletion. The phosphate depletion occurs between the third and 

fourth time point, i.e. at 35 and 47 hours for M145 and M1152, respectively. We also observe 

that the first time point in M145 is very different from all other samples. 

 



 

Figure S4: Clustered heatmaps of Z-score based on CO2-normalized sum of fluxes of all 

pathways standardized within each pathway and separated into different subsystems / 

parts of the metabolism. Related to Figure 2D. A) Central carbon metabolism. B) Amino acid 

metabolism. C) Metabolism of vitamins and cofactors. D) Pathways of Biosynthetic gene 

clusters. E) Lipid metabolism. F) Oxidative stress. G) Degradation of toxic compounds. H) All 

other pathways. For all panels only pathway with a minimum flux of 1e-8 mmol (g DW)-1 h-1 

were included. 
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Figure S5: RNA-seq, proteome and flux prediction of specific gene clusters and reactions. 

Related to Figure 2, 3 and S7. A) This panel display increasing CO2-normalized flux through 

citrate synthase (CS) and isocitrate dehydrogenase (ICDHyr) at later time points in M145 as 

predicted by EcSco-GEM. These two reactions are both part of the TCA cycle, converting 

acetyl-CoA to citrate (citrate synthase) and isocitrate to alpha-ketogluterate (isocitrate 

dehydrogenase). B) Log2 normalized expression data of genes involved in oxidative 

phosphorylation for M145 (blue) and M1152 (orange). The average expression level is higher 

in M1152 than in M145 but increasing at later time points for both strains. The expression 

profiles are only partially overlapping along the x-axis (hours after inoculation) because of the 

reduced growth and therefore delayed cultivation of M1152. C-H) Comparison of log2 

normalized expression data as calculated with (log2 M145)-log2(M1152), where positive 

values indicate upregulation in M145 relative to M1152, and vice versa for negative values. C) 

Increased expression of genes of the AfsR regulon in M145, while no significant difference in 

expression is observed for (D) ScbR regulon; (E) AdpA regulon; (F) ArgR regulon; (G) genes 

induced by ppGpp; and (H) genes repressed by ppGpp. 

 

 



 

Figure S6: Biomass yield on glucose and glutamic acid, related to Figure 4. M1152 (orange) 

has a higher growth yield on glucose than M145 (blue). The yield on glutamic acid (dashed 

line) is similar between the two strains.  



 

Figure S7: Analysis of transcriptome data of genes, related to Figure 2, 3, S5 and S8, and 

cultivation data of M1146, related to Figure 7. A) The heatmap display the mean standardized 

log2 expression levels for the 7 clusters of differentially expressed genes as determined by 

unsupervised clustering (k-means). Cluster 1-3 are upregulated in M1152, while the last four 

E

RNAseq: SoxR regulon RNAseq: genes encoding ribosomal proteins



(cluster 4-7) are upregulated from the beginning or at later time points in M145. B-D) 

Comparison of log2 normalized expression data as calculated with (log2 M145)-log2(M1152), 

where positive values indicate upregulation in M145 relative to M1152, and vice versa for 

negative values. B) Genes in the SoxR regulon are reducing expression in M1152 at later time 

points. C) Almost all genes in the ATP-synthase cluster are up-regulated in M1152 after the 

first time point. D) The transcription of ribosomal protein genes after the metabolic switch is 

increased in M1152 compared to M145. E) Batch cultivation data of S. coelicolor M1146, 

showing volume corrected respiration (CO2), phosphate (PO4) and cell dry weight (CDW). Error 

bars are standard deviations of three biological replicates.  



 



Figure S8: Gene Ontology enrichment analysis of the 7 clusters identified in the 499 

differentially expressed genes, categorized by function into four clustered heatmaps. 

Related to Figure 4, 6 and S7A. Each heatmap shows the p-value for the enrichment of each 

GO-process. A) Genes related to reactive oxygen species, the ribosome or development 

process and cell wall formation. B) Oxireductase and iron / metal ion homeostasis. C) 

Regulation, biosynthesis and metabolism related to RNA and DNA. D) All other GO-

annotations. E) This color palette is the legend for the column colors on top of each heatmap 

which displays which of the seven clusters each gene belongs to. The red palette covers cluster 

1-3 (upregulated in M1152), while the blue palette covers cluster 4-7 (upregulated in M145). 

Note that no GO-processes were enriched for the genes in cluster 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S9: Comparison of normalization methods of randomly sampled fluxes, related to 

Figure 2D and 3D. Heatmap showing mean flux values normalized by A) total carbon uptake 

from glucose and glutamate, B) CO2 production, C) sum of all fluxes and D) growth rate. 

Because the mean flux values in these reactions are different by several orders of magnitude, 

we display the data as standardized values (for each reaction).  

 

 

 

 

 

 

 



 

Figure S10: Estimation of rates for M145 and M1152 from cultivation data, related to Transparent 

methods, Table S1 and S2. A and B) Exponential fit of the CO2 data to the exponential growth 

phase of M145 and M1152, respectively. C and D) Piecewise linear fit to estimate growth rates 

from the CDW measurements of M145 and M1152, respectively. E and F) Piecewise linear fit 

of glucose concentration in the cultivations of M145 and M1152, respectively.  G and H) 

Piecewise linear fit of glutamic acid concentration in the cultivations of M145 and M1152, 

respectively. I) Estimated production rate of undecylprodigiosin (Red) in M145.  

 

 



Table S1: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 2D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth 

rate [h-1] 

Glucose Glutamic 

acid 

RED Germicidin-A Germicidin-

B 

21 0.517 0.246* -4.528§ -11.462§ 0 0 0 

29 3.007 0.103 -0.779 -1.973 0 0 0 

33 4.251 0.073 -0.551 -1.395 0 0 0 

37 5.301 0.009 -0.338 -1.116 9.60E-05 5.70E-05 8.00E-05 

41 5.487 0.008 -0.327 -1.078 9.20E-05 5.50E-05 7.80E-05 

45 5.672 0.008 -0.316 -1.043 8.90E-05 5.40E-05 7.50E-05 

49 5.845 0.003 -0.223 -0.803 8.70E-05 5.20E-05 7.30E-05 

53 5.918 0.003 -0.220 -0.793 8.60E-05 5.10E-05 7.20E-05 

57 5.991 0.003 -0.217 -0.784 8.50E-05 5.10E-05 7.10E-05 

*This is the maximal growth rate predicted from the exponential fit of the CO2 curve. The estimated 

rate from the linear fit of the CDW was unrealisticly high.  

§The values for the glucose and glutamate uptake rates are probably too high. 

Table S2: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 3D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth rate 

[h-1] 

Glucose 
 

Glutamic 

acid 

RED Germicidin-

A 

Germicidin-

B 

33 1.379 0.140 -0.399 -3.017 0 0 0 

41 2.929 0.066 -0.188 -1.421 0 0 0 

45 3.704 0.052 -0.394 -1.415 0 0 0 

49 4.478 0.043 -0.382 -1.374 0 0 0 

53 4.835 0.007 -0.372 -1.336 0 3.00E-06 1.56E-05 

57 4.767 -0.005 -0.177 -0.772 0 3.10E-06 1.58E-05 

61 4.676 -0.005 -0.180 -0.787 0 3.10E-06 1.61E-05 

65 4.585 -0.005 -0.184 -0.803 0 3.20E-06 1.64E-05 



Transparent methods 
Sco-GEM consensus model reconstruction and development 
Sco-GEM, the community consensus model for Streptomyces coelicolor is developed, 

maintained, hosted and publicly available on GitHub 

(https://github.com/SysBioChalmers/Sco-GEM). When we refer to files in the following 

sections, we use the file names and relative to the main folder in this GitHub repository. By 

hosting the model on GitHub, we make the reconstruction transparent, the data accessible, 

provide a structure framework for further development by the community. To this end we  

also created a channel on Gitter dedicated to Sco-GEM questions and discussions 

(https://gitter.im/SysBioChalmers/Sco-GEM). The model repository was created using 

memote (Lieven et al., 2018) and we use a GitFlow structure with two main branches, the 

devel branch contains the most recent changes while the master branch contains the stable 

releases. All new features or bug fixes are performed in separate branches that are 

incorporated into the devel branch through pull requests. Semantics for branch names and 

commit messages are described in CONTRIBUTING.rst. The main script language for the model 

reconstruction is python (version > 3.6), with the exception being the feat/ecModel branch 

with the development of the enzyme-constrained model (EcSco-GEM) where Matlab (version 

> 7.3) is used.   

In terms of folder structure data files, scripts and model files are stored in 

ComplementaryData, ComplementaryScripts, and ModelFiles, respectively. In the main folder 

we find the following files: 

- .gitignore: File which describes file formats automatically ignored by git 

- .gitconfig: Git config file 

- .gitmodules: List of linked submodules 

- CONTRIBUTING.rst: Guidelines describing how to contribute 

- README.md: General information about the repository 

- HISTORY.rst: History of model version releases 

- LICENSE.md: License information 

- memote.ini: File created by memote (Lieven et al., 2018) 

- requirements.txt: List of python-packages required to run the model reconstruction 



- .travis.yml: Config file for automatization of memote with Travis (https://travis-

ci.org/) 

 

Sco-GEM can be reconstructed at any time using the python script 

ComplementaryScripts/reconstruct_scoGEM.py. Each task of the reconstruction process is 

performed in a separate script and associated with an issue on GitHub (Data Set S1, Tab 1). The 

details of each task are described in the following paragraphs.  

Curate identified issues in iKS1317 
We used iKS1317 (Kumelj et al., 2019) as the starting point for the reconstruction of Sco-GEM. 

Since the publication of iKS1317, several issues had been identified and these were curated as 

the initial step in the reconstruction pipeline. The curations include correcting the mass and 

charge balance of the reactions NOR_syn, OAADC, SEPHCHCS and DIOP5OR, and correcting 

the ec-code, KEGG annotation and gene association for the reactions 3OXCOAT, MMSYNB, 

PGMT, PPM, ME1, GLUDyi, GLUSx, GLUSy and GLUN. 

 

Curate and add reactions from Sco4 
The Sco4 GEM of S. coelicolor (Wang et al., 2018) contained additional reactions that we 

wanted to include in Sco-GEM. However, prior to adding content from Sco4 we curated issues 

that had been identified since publication. Eleven reactions were found to be either duplicated 

or wrong in Sco4, and these were removed: RXN0-5224, METHYLGLUTACONYL-COA-

HYDRATASE-RXN, GLU6PDEHYDROG-RXN, RXN-15856, 1.14.13.84-RXN_NADPH, R03998, 

R03999, R09692_NADPH, RXN-9930, 1.17.1.1-RXN_NADH, R09692_NADH. We additionally 

updated the gene annotations of the following reactions: RMPA, ABTDG, PROD2, THRPDC, 

ADCL, OXPTNDH, GLNTRS, CU2abc, CBIabc, CBL1abc, GSNt2, INSt2 and PDH. 

To enable addition of reactions from Sco4 (Wang et al., 2018) to Sco-GEM we mapped 

reactions added during the Sco4 development to reactions present in iKS1317 (Kumelj et al., 

2019). This mapping was performed semi-automatically: automatic mapping using KEGG and 

BioCyc annotations followed by manual curation. In total, 394 new reactions and 404 new 

metabolites were added from Sco4 to Sco-GEM (Data Set S1, Tab 5 and 6). Most of the 

reactions and metabolites added from Sco4 had IDs from the MetaCyc database (Caspi et al., 



2014), containing characters such as dash or parentheses not properly handled by the SBML 

parser in COBRApy (Ebrahim et al., 2013). Thus, the ID of all reactions and metabolites added 

from Sco4 were changed to the correct BiGG ID if possible, otherwise a new ID was created 

according to the guidelines given in BiGG (King et al., 2016). KEGG (Kanehisa, 2000) and 

MetaNetX (Moretti et al., 2016) identifiers were included as annotations when possible. Full 

lists of the IDs and annotations given to reactions and metabolites added from Sco4 are found 

in the GitHub repository folder ComplementaryData/curation as added_sco4_reactions.csv 

and added_sco4_metabolites.csv, respectively. 

 

Add gene annotations, reactions and metabolites to Sco-GEM from iAA1259 
Based on supplementary files 4 and 5 from iAA1259 (Amara et al., 2018) which list the 

reactions and metabolites added in iAA1259, we identified 44 reactions and 31 metabolites 

present in neither Sco4 or iKS1317 (Data Set S1, Tab 7 and 8). These 44 reactions were added 

from iAA1259 and were mainly related to coelimycin biosynthesis, xylan and cellulose 

degradation and butyrolactones pathway. We further incorporated the modification of 27 

reactions curated in iAA1259, associated with oxidative phosphorylation, futalosine pathway 

or chitin degradation (Data Set S1, Tab 9). These curations mainly updated gene-reaction rules 

but also updated reaction bounds and deletion of two reactions (CFL and DHFUTALS). Finally, 

we incorporated the biomass-function which was updated in iAA1259.  

Change direction of reactions that were backwards irreversible 
The pipeline for reconstruction of the enzyme-constrained model required all reactions to be 

either reversible or forward irreversible (i.e. reactions with bounds (-1000, 0) are not allowed). 

Therefore, all backward irreversible reactions were rewritten (substrates were changed to 

products and vice versa) so they could be represented as forward irreversible. 

Fix missing / wrongly annotated reactions and metabolites  
We identified several minor issues related to reaction and metabolite IDs or annotations. 

These may come from the current or previous model reconstruction efforts. These issues 

include: 

- Misspelled IDs or annotations 

- Empty annotations in SBML file 

- Wrong BioCyc annotations for metabolites and reactions in the germicidin pathway 



- Update all MetaNetX annotations 

- Exchange reactions given BioCyc annotations 

- Fix chebi annotations so they comply with the MIRIAM identifiers 

- Mixed up IDs for actACPmmy and malACPmmy 

 

Create pseudo-metabolites for NADH/NADPH and NAD+/NADP+ to use in reaction were the 
redox cofactor is not known 
For some redox reactions added from Sco4, it was not sure if NADH/NAD+ or NADPH/NADP+ 

was the participating cofactor pair. In this case, both possibilities were included in Sco4. 

However, to avoid duplicated reactions and make it explicit that the cofactor is unknown we 

changed these reactions to use pseudo-metabolites (acceptor_c and donor_c) as the cofactor 

pair. We then also included pseudo-reactions which converts NADH/NADPH and NAD+/NADP+ 

to donor_c and acceptor_c, respectively [pseudo-reaction IDs: PSEUDO_DONOR_NADH; 

PSEUDO_DONOR_NADPH; PSEUDO_ACCEPTOR_NAD; PSEUDO_ACCEPTOR_NADP). In total 17 

enzymatic reactions use these pseudo-metabolites as cofactor pair: 3OCHOCDH; OXCOADH; 

4DPCDH; 4HYDPRO; 4NITROB; AHLGAL; AHOPS; CADHX; DDALLO; DPCOX; GDP64HRD; 

HDAPMO; PHYFLUDS; HYTDES; SORBDH; ZCARDS; ZCAROTDH2. 

Add SBO terms to genes, reactions and metabolites 
SBO (Systems Biology Ontology) (Courtot et al., 2011) terms were included as annotations of 

reactions, genes and metabolites according to Data Set S1, Tab 10. 

 

 

Update the biomass reaction 
In iAA1259, the biomass reaction was curated in respect to 2-demethylmenaquinol and 

menaquinol, however, this resulted in a biomass reaction that combined described more than 

1 g per gDCW. In addition, the biomass reaction of all S. coelicolor models have described small 

molecule and protein co-factors/prosthetic groups as components, where their abundance 

was arbitrarily set to complement the remaining biomass components to reach 1 g per gDCW. 

This is likely a gross overestimation for many of these molecules, and this proved problematic 

for initial simulations with the enzyme constrained model. In contrast to enzymes of central 

carbon metabolism, enzymes involved in biosynthesis of such co-factors and prosthetic groups 



have typically lower efficiency, such that large fractions of the protein allocation would have 

to be devoted to these pathways if the abundances are overestimated. 

The availability of proteomics data has allowed us to give more reasonable estimates of 

abundance of protein-linked cofactors and prosthetic groups. The new biomass reaction was 

estimated through the following steps: 

1. By querying UniProt, a list of prosthetic groups per protein were collated 

(ComplementaryData/biomass/prosthetic_groups_uniProt.txt) and further processed 

(ComplementaryScripts/ecModel/prostheticGroups.m) as detailed below. 

2. If metal was specified as cofactor, the abundance was split over cobalt2+, cupper2+, 

iron2+, zinc2+, nickel2+, calcium2+, potassium+, magnesium2+ and manganese2+. 

3. Dipyrromethane is generated by the enzyme itself from its substrate and is therefore 

not further considered. 

4. From the M145 and M1152 cultivation data, quantitative proteomics was estimated 

as detailed below. 

5. Cofactor abundances were estimated by combining the estimated protein levels and 

the protein cofactor annotation (available at ComplementaryData/biomass/ 

prosthetic_groups_mets.txt) 

6. To simplify fitting of biomass components, the full biomass reaction was split into the 

pseudometabolites lipid, dna, rna, protein, carbohydrate, cell_wall and misc, with the 

latter containing the cofactors (ComplementaryData/biomass/standard_biomass.txt). 

7. After updating the abundances of the cofactors, the remaining misc metabolites were 

refitted to ensure that the total biomass adds up to 1 g per gDCW. 

The updated composition (ComplementaryData/biomass/biomass_scaled.txt) was 

subsequently used to modify the model stoichiometry (fix_biomass.py). A comparison of the 

updated biomass reaction and the biomass reaction in iAA1259 is presented in Data Set S1, 

Tab 2. 

 

Model reversibility 
By using the python-API (https://gitlab.com/elad.noor/equilibrator-api) of eQuilibrator 

(Flamholz et al., 2012) we calculated the change in Gibbs free energy for 770 reactions (Data 



Set S1, Tab 3). eQuilibrator can only calculate the change in Gibbs free energy for intracellular 

reactions (i.e. not transport and exchange reactions) where all metabolites are mapped to 

KEGG (Kanehisa, 2000; Kanehisa et al., 2019). The calculations are based on the component 

contribution method (Noor et al., 2013). The change in Gibbs free energy was calculated at 

standard conditions (25 °C, 1 bar), pH7 and 1mM concentration of reactants, denoted ΔrG'm in 

eQuilibrator. We then applied a threshold of -30 kJ/mol to define a reaction as irreversible 

(Bar-Even et al., 2012; Feist et al., 2007), and compared the calculated reversibility with the 

reversibility of these reactions in the model prior to curation. We found that the reversibility 

was equal for 56.9% (438 / 770) of the reactions (Figure 1E). The majority of differences were 

reactions that were irreversible in the model but classified as reversible using the calculated 

values for the change in Gibbs free energy (35%; 273/770; Figure 1E). 

 Using the set of growth data and knockout data, we evaluated the effect of the suggested 

changes in reaction reversibility: by randomly applying these changes to 10 reactions at the 

time, we identified 13 single, 22 pairs and  13 triplets of reactions (consisting of 55 unique 

reactions) that reduced model accuracy when the reversibility was changed based on the 

change in Gibbs free energy (Data Set S1, Tab 11). Then we used the data set of growth and 

gene knockout phenotypes (Kumelj et al., 2019) to identify another 6 reactions that caused 

erroneous predictions if the reversibility were changed (PROD2, ARGSS, OCT, URIK1, URIK2, 

and UPPRT). These 61 reactions were discarded from having the reversibility 

changed, resulting in a total of 271 reactions with changed reversibility.  

Energetic cofactors, including ATP, NADPH, NADH, FAD and any quinone, were involved in 284 

of the 770 reactions for which the change in Gibbs free energy was calculated. Of the 114 

reactions involving ATP, 82 reactions had an estimated change in Gibbs free energy between 

±30 kJ/mol, indicating that the reactions were reversible. Because one assumes that ATP-

driven reactions in general are irreversible (Thiele and Palsson, 2010), the reversibility of these 

82 reactions were manually curated (Data Set S1, Tab 12). For the 7 quinone-associated 

reactions for which the change in Gibbs free energy was calculated (CYTBD2, NADH17b, 

NADH10b, MBCOA2, G3PD5, PDH3, NADH2r) all were defined as irreversible as previously 

suggested (Thiele and Palsson, 2010). The reversibility of reactions involving any of the other 

energetic cofactors were treated as any other reaction as previously described.  



Analysis and annotation of transport reactions 
Gene annotations, substrate and transport class information were mostly extracted from 

Transport DB 2.0 (Elbourne et al., 2017) and TCDB (Saier et al., 2016). Then, transport proteins 

were extracted from IUBMB-approved Transporter Classification (TC) System and categorized 

into 9 main classes (Figure 1F): 1) ABC transporter; 2) PTS transporter; 3) Proton symporter; 

4) Sodium symporter; 5) Other symporter; 6) Proton antiport; 7) Other antiport; 8) Facilitated 

diffusion; 9) Simple diffusion. For those transport proteins with an ambiguous substrate 

annotation in TCDB, the specific substrate annotation was obtain by extracting annotations 

from KEGG (Kanehisa, 2000; Kanehisa et al., 2019), UniProt (The UniProt Consortium, 2019) or 

through BLAST homology search (NCBI Resource Coordinators, 2017) using a similarity 

threshold of 90% (Data Set S1, Tab 4). 

Subsystem annotations 
We leveraged the KEGG and BioCyc annotations of each individual reaction to extract a draft 

subsystem and pathway annotation for each reaction. For KEGG, this was achieved by using 

the python module BioServices (Cokelaer et al., 2013) while we used PythonCyc 

(https://github.com/latendre/PythonCyc) and PathwayTools (Karp et al., 2016) to extract 

pathway annotations from BioCyc (Karp et al., 2019). 

The draft annotations were then curated, and each reaction was annotated to one out of 15 

subsystems. When no or multiple annotations were extracted from the databases we used 

adjacent reactions in the metabolic network to infer the single, most correct annotation. These 

15 subsystem categories are based on the categories of the KEGG Pathway Maps for 

metabolism (https://www.genome.jp/kegg/pathway.html) but we have included three 

additional categories to cover all aspects of the model: Biomass and maintenance functions, 

Membrane Transport, and Exchange (Figure S1). 

We also annotated 1964 of the 2552 reactions to one out of 128 different pathways. The 

remaining 588 are mostly transport and exchange reactions, or possibly reactions not fitting 

into any of these pathways.  

Export model file with alphabetical ordering 
An import feature with GitHub is the ability to easily see changes in text files after every 

commit. However, COBRApy (Ebrahim et al., 2013) doesn’t sort the list of reactions, 

metabolites and genes before the SBML-file is written and this make it look like there was a 



lot of changes even when the model is unchanged. Thus, we now sort these lists before writing 

to file. The export function also stores the model-file in the YAML format which is more 

readable than SBML (XML). Finally, the export function creates the requirements.txt file which 

holds information about all non-standard python modules necessary to run the model 

reconstruction. 

 

Development of enzymatically constrained (EcSco-GEM) model 
An enzyme-constrained version of the Sco-GEM model (denoted EcSco-GEM) was generated 

using GECKO (Sánchez et al., 2017). The GECKO method enhances an existing GEM by explicitly 

constraining the maximum flux through each reaction by the maximum capacity of the 

corresponding enzyme, given by the product of the enzyme abundance and catalytic 

coefficient. Both reversible reactions and reactions catalysed by isoenzymes (redundant 

genes) are handled automatically by the GECKO method by splitting each occurrence into 

individual reactions. The Sco-GEM v1.1 model was modified using GECKO version 1.3.4. Kinetic 

data, in the form of kcat values (s-1), were automatically collected from BRENDA (Jeske et al., 

2019). If BRENDA did not report a kcat value for an enzyme, GECKO searched for alternative kcat 

values by reducing specificity, on the level of substrate, enzymatic activity (EC number) and 

organism.  

A total of 4753 kcat values were matched, including separate values for forward and backward 

direction for reversible reactions, of which: 

- 53 were matched with organism (S. coelicolor) and correct substrate 

- 1541 were matched with closest organism and correct substrate 

- 236 were matched with organism (S. coelicolor) and any substrate 

- 15 were matched with organism (S. coelicolor) and any substrate, reported specific 

activities instead of kcat (corrected in the model for molecular weight of the enzyme) 

- 2586 were matched with closest organism and any substrate 

- 322 were matched with any organism and any substrate, reported specific activities 

instead of kcat (corrected in the model for molecular weight of the enzyme) 

 

The algorithm first looped through these criteria above, with the full EC code. If no match 



could be found, wildcards were added (e.g. EC2.3.4.- instead of EC2.3.4.5), followed by going 

through the list of criteria above. The statistics there is: 

- 4178 were matched without any wildcards (full EC code) 

- 544 were matched after adding one wildcard 

- 21 were matched after adding two wildcards (e.g. EC2.3.-.-) 

- 10 were matched after adding three wildcards 

- 0 were matched after adding four wildcards 

 

Using the initial set of BRENDA-suggested kcat values, the model was evaluated to support 

simulation of experimentally measured growth rates. During this testing the NAD(H)/NAD(P)H 

pseudo-reactions were blocked to avoid infeasible loops. 

 The following kcat values were identified as growth limiting resulting in the stated manual 

curations: 

- Chorismate synthase (CHORS; EC4.2.3.5; SCO1496; Q9KXQ4) 

Sco-GEM uses 5-O-(1-Carboxyvinyl)-3-phosphoshikimate as name of the main 

substrate, while BRENDA uses its synonym 5-enolpyruvylshikimate 3-phosphate. This 

prevented automatically finding the substrate. Hence, the kcat was manually changed 

to 0.87 s-1, as measured from N. crassa (Rauch et al., 2008). 

- Phosphoribosylformylglycinamidine synthase (PRFGS; EC6.3.5.3; SCO4077 and 

SCO4078 and SCO4079; Q9RKK5 and Q9RKK6 and Q9RKK7) 

kcat suggested by BRENDA used NH4+ as substrate, instead of glutamine. Specific 

activity using glutamine is provided for E. coli: 2.15 μmol/min/mg protein (Schendel 

et al., 1989). Assuming molecular weight of 141 kDa, this translates to kcat = 5.05 s-1. 

 

- Methylmalonate-semialdehyde dehydrogenase (malonic semialdehyde) (MMSAD3; 

EC1.2.1.27; SCO2726; Q9L1J1) 

kcat suggested by BRENDA is from archaea, instead use kcat value of 2.2 s-1 from B. 

subtilis (Talfournier et al., 2011). 

 



- Phosphoribosyl-ATP pyrophosphatase (PRATPP; EC3.6.1.31; SCO1439; Q9EWK0) 

kcat suggested by BRENDA was calculated from specific activity in Salmonella enterica, 

but the reported value was measured in cell extract, not from purified enzyme. 

Instead, use specific activity from S. cerevisiae: 332 umol/min/mg protein (Keesey et 

al., 1979). Assuming molecular weight of 95 kDa, this translates to a kcat of 526 s-1. 

 

- Glyceraldehyde 3-phosphate dehydrogenase (Q9Z518/EC1.2.1.12) - assigned kcat from 

Corynebacterium glutamicum was highly growth limiting. Instead use specific activity 

measured of pentalenolactone sensitive gapdh in Streptomyces arenae: 112 

umol/min/mg protein (Maurer et al., 1983). 

Then, separate models were created for each strain (the gene clusters for actinorhodin, 

undecylprodigiosin, CDA and coelimycin P1 were removed to create M1152) and for each time 

point by using estimated growth, uptake rates of glutamate and glucose, secretion rates of 

undecylprodigiosin, germicidin A and B and proteome measurements. The estimated growth, 

uptake and secretion rates were estimated from raw measurements across three biological 

replicates (details provided in the last section). These time point specific models (9 time points 

for M145, 8 time points for M1152) were used to analyse the activity in individual metabolic 

pathways through random sampling (Bordel et al., 2010). We also created one EcSco-GEM 

model for each strain with a global constraint on the protein usage instead of specific protein 

usage, which were used for model quality control.  

Continuous integration and quality control with memote 
Validation and quality assessment of Sco-GEM is carried out using the test-suite in memote 

(Lieven et al., 2018). Memote provides by default a large range of tests, which we have used 

to identify issues and possible improvements. The test suite reports descriptive model 

statistics such as the number of genes, reactions and metabolites, and also checks the 

presence of SBO terms and annotations, the charge and mass balance of all reactions, the 

network topology and find energy-generating cycles (Fritzemeier et al., 2017). Additionally, 

we incorporated custom tests into the memote test-suite to automatically compare predicted 

phenotypes with experimental data in different growth media and for different knockout 

mutants. In addition to the classical binary classifiers accuracy, sensitivity and specificity we 

also report the Matthews correlation coefficient which is considered to be more reliable when 



the number of elements in each classification category is skewed (Chicco and Jurman, 2020). 

The Matthews correlation coefficient (MCC) is calculated from the true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN) values as 𝑀𝑀𝑀𝑀𝑀𝑀 =

 𝑇𝑇𝑇𝑇 ⋅𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇⋅𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

. The experimental growth and knockout data are extracted 

from (Kumelj et al., 2019). As a separate evaluation, we applied another method for identifying 

internal and unrealistic energy-generating cycles (Noor, 2018) , and no such cycles were found 

in Sco-GEM. 

The simplest use of memote is generating snapshot reports showing the current state of the 

model. However, by integrating Travis CI [https://travis-ci.com/] into the gitHub repository, 

memote can be used to create a continuous report displaying how each commit affects the 

model quality. Memote version 0.9.12 was used in this work, and the memote snapshot report 

for Sco-GEM is given in the Supplemental Information. 

 

Random sampling, normalization and pathway analysis 
Because of the huge number of reactions in the EcSco-GEM, it is challenging to sample the 

solution space appropriately: we have chosen to use the method provided in the Raven 

Toolbox 2 (Bordel et al., 2010; Wang et al., 2018), which samples the vertices of the solution 

space. The drawback of this method is that it will not result in a uniform sampling of the 

solution space. However, it is more likely to span the entire solution space and also not prone 

to get stuck in extremely narrow parts of the solution space, which may happen with variants 

of the hit-and-run algorithm (Haraldsdóttir et al., 2017; Kaufman and Smith, 1998; 

Megchelenbrink et al., 2014). For each of the time points for each strain (17 different 

conditions in total) we constrained exchange reactions between 99% and 101% of the 

measured rates and generated 5000 random flux distributions with Gurobi as the solver. The 

reactions catalysed by isoenzymes were combined into the set of reactions in Sco-GEM and 

the reactions providing protein for each reaction. The mean of the 5000 flux distributions for 

each metabolic reaction was used in the following analysis.  

Finally, for each of the 17 conditions, the mean fluxes were normalized by the CO2 production 

rate. Then, the normalized mean fluxes were summarized for each metabolic pathway by using 

the curated pathway annotations, and we consider this a measure of the metabolic activity in 



each pathway. To ease visual interpretation of this data we used the function clustermap with 

default parameters in Seaborn version 0.9.0 (Michael Waskom et al., 2018) (which uses Scipy 

v1.3.1 (Virtanen et al., 2020)) to perform hierarchical clustering of pathways based on the 

metabolic activity in M145 (Figure 2D). We then kept this order in Figure 3D to enable strain 

comparison. 

Since glucose and glutamate uptake rates, as well as growth rates were significantly different 

in the two strains and at different time points, normalization of the data was necessary to 

compare flux distributions. We tested various proxies as indicators of overall metabolic activity 

for normalization, namely CO2 production; the total carbon uptake from glucose and 

glutamate; growth rate and mean flux value. As golden standard, we compared the fluxes 

through individual reactions that are well documented to change in M145 in response to the 

phosphate depletion (Figure S9). Normalization based on CO2 production was tested and gave 

similar results than the data normalized on total carbon uptake from glucose and glutamate 

(Figure S9A and S9B. The data normalized by the sum of fluxes showed similar patterns as 

those achieved by glucose/glutamate and CO2-normalized data but was noisier (Figure S9C). 

Considering the huge differences in growth rate, the growth-normalized data masked any 

other flux patterns (Figure S9D). The fact that different normalizations provided similar 

differences in metabolic fluxes proved that the inferred changes in metabolism were not 

artefacts of the normalization method but represent true metabolic activity of each strain.  

Strains, cultivation conditions, sampling procedures, and analyses of media components 
and secondary metabolites 
Experiments were performed using strain M145 of S. coelicolor A3(2) and its derivatives 

M1146 and M1152. The latter two are lacking the 4 major BGCs for actinorhodin (Act), 

undecylprodigiosin (Red), coelimycin P1 (Cpk), and calcium-dependent antibiotic (CDA), while 

M1152 is also carrying the pleiotropic, previously described antibiotic production enhancing 

mutation rpoB [S433L] (Gomez-Escribano and Bibb, 2011; Hu et al., 2002). All strains were 

kindly provided by Mervyn Bibb at John-Innes-Centre, Norwich, UK. 

Triplicate cultivations of the strains were performed based on germinated spore inoculum on 

1.8 L phosphate-limited medium SSBM-P, applying all routines of the optimized submerged 

batch fermentation strategy for S. coelicolor established and described before (Wentzel et al., 

2012). All media were based on ion-free water, and all chemicals used were of analytical grade. 



In brief, spore batches of M145, M1146 and M1152 were generated by cultivation on soy flour-

mannitol (SFM) agar plates (Kieser et al., 2000), harvesting by scraping off spores and 

suspension in 20% (v/v) glycerol, and storage in aliquots at −80 °C. 109 CFU of spores of each 

strain were germinated for 5 hours at 30 °C and 250 rpm in 250 mL baffled shake-flasks with 

2 g of 3 mm glass beads and 50 mL 2x YT medium (Claessen et al., 2003). The germinated 

spores were harvested by centrifugation (3200 x g, 15 °C, 5 min) and re-suspended in 5 mL 

ion-free water. An even dispersion of the germinated spores was achieved by vortex mixing 

(30 s), ensuring comparable inocula among biological replicas. Each bioreactor (1.8 liter 

starting volume culture medium in a 3-liter Applikon stirred tank reactor) was inoculated with 

4.5 mL germinated spore suspension (corresponding to 9x108 CFU). Phosphate-limited 

medium SSBM-P (Nieselt et al., 2010) consisted of Na-glutamate, 55.2 g/L; D-glucose, 40 g/L; 

MgSO4, 2.0 mM; phosphate, 4.6 mM; supplemented minimal medium trace element solution 

SMM-TE (Claessen et al., 2003), 8 mL/L and TMS1, 5.6 mL/L. TMS1 consisted of FeSO4 x 7 H2O, 

5 g/L; CuSO4 x 5 H2O, 390 mg/L; ZnSO4 x 7 H2O, 440 mg/L; MnSO4 x H2O, 150 mg/L; Na2MoO4 

x 2 H2O, 10 mg/L; CoCl2 x 6 H2O, 20 mg/L, and HCl, 50 mL/L. Clerol FBA 622 fermentation 

defoamer (Diamond Shamrock Scandinavia) was added to the growth medium before 

inoculation. Throughout fermentations, pH 7.0 was maintained constant by automatic 

addition of 2 M HCl. Dissolved oxygen levels were maintained at a minimum of 50% by 

automatic adjustment of the stirrer speed (minimal agitation 325 rpm). The aeration rate was 

constant 0.5 L/(L x min) sterile air. Dissolved oxygen, agitation speed and carbon dioxide 

evolution rate were measured and logged on-line, while samples for the determination of cell 

dry weight, levels of growth medium components and secondary metabolites concentrations, 

as well as for transcriptome and proteome analysis were withdrawn throughout the 

fermentation trials as indicated in Figure 2B. For transcriptome analysis, 3 × 4 ml culture 

sample were applied in parallel onto three 0.45 μm nitrocellulose filters (Millipore) connected 

to vacuum. The biomass on each filter was immediately washed twice with 4 ml double-

autoclaved ion-free water pre-heated to 30 °C, before the filters were collected in a 50 ml 

plastic tube, frozen in liquid nitrogen and stored at -80 °C until RNA isolation. For proteome 

analysis, 5 ml samples were taken and centrifuged (3200 x g, 5 min, 4 °C), and the resulting 

cell pellets frozen rapidly at -80 °C until further processing. 



Levels of phosphate were measured spectrophotometrically by using the SpectroQuant 

Phosphate test kit (Merck KGaA, Darmstadt, Germany) following the manufacturer’s 

instructions after downscaling to 96-well plate format. D-glucose and L-glutamate 

concentrations were determined by LC-MS using suitable standards, and measured 

concentrations were used to estimate specific uptake and excretion rates. Undecylprodigiosin 

(Red) levels were determined spectrophotometrically at 530 nm after acidified methanol 

extraction from the mycelium (Bystrykh et al., 1996). To determine relative amounts of 

actinorhodins (determined as total blue pigments, TBP), cell culture samples were treated with 

KOH (final concentration 1 M) and centrifuged, and the absorbance of the supernatants at 640 

nm was determined (Bystrykh et al., 1996). Quantification of germicidin A and B was 

performed using targeted LC-MS analytics. 

Proteomics 
Sample preparation and NanoUPLC-MS analysis 
Quantitative proteomics were performed using pipeline previously described (Gubbens et al., 

2012). Mycelium pellets for proteome analysis were thawed and resuspended in the 

remaining liquid. 50 μL re-suspended mycelium was withdrawn and pelleted by centrifugation. 

100 μL lysis buffer (4% SDS, 100 mM Tris-HCl pH 7.6, 50 mM EDTA) was added, and samples 

were sonicated in a water bath sonicator (Biorupter Plus, Diagenode) for 5 cycles of 30 s high 

power and 30 s off in ice water. Cell debris was pelleted and removed by centrifugation. Total 

protein was precipitated using the chloroform-methanol method described before (Wessel 

and Flügge, 1984). The pellet was dried in a vacuum centrifuge before dissolving in 0.1% 

RapiGest SF surfactant (Waters) at 95 °C. The protein concentration was measured at this 

stage using BCA method. Protein samples were then reduced by adding 5 mM DTT, followed 

by alkylation using 21.6 mM iodoacetamide. Then trypsin (recombinant, proteomics grade, 

Roche) was added at 0.1 μg per 10 μg protein. Samples were digested at 37 °C overnight. After 

digestion, trifluoroacetic acid was added to 0.5% followed by incubation at 37 °C for 30 min 

and centrifugation to remove MS interfering part of RapiGest SF. Peptide solution containing 

8 μg peptide was then cleaned and desalted using STAGE-Tipping technique (Rappsilber et al., 

2007). Final peptide concentration was adjusted to 40 ng/μL using sample solution (3% 

acetonitrile, 0.5% formic acid) for analysis. 



200 ng (5 μL) digested peptide was injected and analysed by reversed-phase liquid 

chromatography on a nanoAcquity UPLC system (Waters) equipped with HSS-T3 C18 1.8 μm, 

75 µm X 250 mm column (Waters). A gradient from 1% to 40% acetonitrile in 110 min (ending 

with a brief regeneration step to 90% for 3 min) was applied. [Glu1]-fibrinopeptide B was used 

as lock mass compound and sampled every 30 s. Online MS/MS analysis was done using Synapt 

G2-Si HDMS mass spectrometer (Waters) with an UDMSE method set up as described in 

(Distler et al., 2014). 

Data processing and label-free quantification 
Raw data from all samples were first analysed using the vender software ProteinLynx Global 

SERVER (PLGS) version 3.0.3. Generally, mass spectrum data were generated using an MSE 

processing parameter with charge 2 lock mass 785.8426, and default energy thresholds. For 

protein identification, default workflow parameters except an additional acetyl in N-terminal 

variable modification were used. Reference protein database was downloaded from GenBank 

with the accession number NC_003888.3. The resulted dataset was imported to ISOQuant 

version 1.8 (Distler et al., 2014) for label-free quantification. Default high identification 

parameters were used in the quantification process. TOP3 result was converted to PPM 

(protein weight) and send to the modelers and others involved in interpreting the data (Data 

Set S3). 

TOP3 quantification was filtered to remove identifications meet these two criteria: 1. 

identified in lower than 70% of samples of each strain and 2. sum of TOP3 value less than 1 × 

105. Cleaned quantification data was further subjected to DESeq2 package version 1.22.2 (Love 

et al., 2014) and PCA was conducted after variance stabilizing transformation (vst) of 

normalized data. 

Transcriptomics 
RNA extraction and quality control 
Bacteria were lysed using RNAprotect Bacteria (Qiagen) and following the manufacturer´s 

instruction. Briefly, filters containing bacteria were incubated with 4 ml of RNAprotect Bacteria 

reagent. After centrifugation, resulting samples were lysed using 500 µl of TE buffer (10 mM 

Tris·Cl, 1 mM EDTA, pH 8.0) containing 15 mg/ml lysozyme using 150-600 µm diameter glass 

beads (Sigma) agitated at 30 Hz for 5 minutes in the TissueLyser II (Qiagen).  



Total RNA was extracted using RNeasy mini kit (Qiagen) and 700 µl of the resulting lysate 

complemented with 470 µl of absolute ethanol. RNAase-free DNase set (Qiagen) and 

centrifugation steps were performed to prevent DNA and ethanol contamination. Elution was 

performed using 30 µl of RNase-free water and by reloading the eluate on the column to 

improve the RNA yield. The RNA concentration was measured using Qubit RNA BR Assay Kit 

(ThermoFisher Scientific), RNA purity was assessed using A260/A280 and A260/A230 ratio 

using the Nano Drop ND-1000 Spectrophotometer (PEQLAB). RNA Integrity Number was 

estimated using RNA 6000 Nano Kit (Agilent) and the Bioanalyzer 2100 (Agilent). 

Library preparation and sequencing 
A total of 1 µg of total RNA was subjected to rRNA depletion using Ribo-Zero rRNA Removal 

Kit Bacteria (Illumina). The cDNA libraries were constructed using the resulting tRNA and the 

NEBNext Ultra II Directional RNA Library Prep Kit (NEB). Libraries were sequenced as single-

reads (75 bp read length) on an Illumina NextSeq500 platform at a depth of 8–10 million reads 

each. 

RNA-seq data assessment and analysis 
Sequencing statistics including the quality per base and adapter content assessment of 

resulting transcriptome sequencing data were conducted with FastQC v0.11.5 (Andrews, 

2016). All reads mappings were performed against the reference strain of Streptomyces 

coelicolor A3(2) (RefSeq ID NC_003888.3). The mappings of all samples were conducted with 

HISAT2 v2.1.0 (Kim et al., 2015). As parameters, spliced alignment of reads was disabled, and 

strand-specific information was set to reverse complemented (HISAT2 parameter --no-spliced-

alignment and --rna-strandness "R"). The resulting mapping files in SAM format were 

converted to BAM format using SAMtools v1.6 (Li et al., 2009). Mapping statistics, including 

strand specificity estimation, percentage of mapped reads and fraction exonic region 

coverage, were conducted with the RNA-seq module of QualiMap2 v2.2.2-dev (Okonechnikov 

et al., 2016). Gene counts for all samples were computed with featureCounts v1.6.0 (Liao et 

al., 2014) based on the annotation of the respective reference genome, where the selected 

feature type was set to transcript records (featureCounts parameter -t transcript). 

Normalization and differential gene expression  
Raw count files were imported into Mayday SeaSight (Battke and Nieselt, 2011) for common, 

time-series-wide normalization. For this, the raw counts of all biological replicates of one strain 



across the time-series were log2-transformed (with pseudocount of +1 for the genes with zero 

counts) and then quantile-normalized. To make the two normalized time-series data of M154 

and M1152 comparable, they were again quantile-normalized against each other. The 

normalized RNA-seq data are provided in Data Set S4. 

Differentially expressed genes were identified by ANOVA using Orange (v3.2) and the 

bioinformatic toolkit (v), with FDR of <0.01 and a minimal fold enrichment >1 for at least one 

aligned time point. Genes with low expression (log2 < 5 for both strains and time points) were 

not considered for further analysis. The differentially expressed genes were subsequently 

scaled to the expression average and clustered by K-means. Visualization of genes and clusters 

were performed in python (v3.7) with matplotlib (v3.1.1). For this, the time-series of M145 

and M1152 were aligned such that in the visual representation, the expression profiles of the 

two strains are aligned relative to the time point of phosphate depletion. Both DAVID (Huang 

et al., 2009a, 2009b) and the string database (Szklarczyk et al., 2019) was used to evaluate the 

function of each cluster, identifying overrepresentation of function groups based on GO 

annotation or text mining. Identified differential clusters or regulons were extracted from 

literature and plotted (Data Set S2; Figure S8). When we display the RNA-seq data as 

heatmaps (Figure 6 and S3) the order of genes is determined by hierarchical clustering using 

methods as previously described for the clustering of pathways based on metabolic activity. 

Estimation of growth, uptake and production rates for Streptomyces coelicolor M145 
and M1152 from batch fermentation data 
The estimated growth, uptake and secretion rates are based on average values of online and 

offline measurements of batch fermentation from three parallel bioreactors for each strain.  

Growth rate estimation 
Both the CDW (cell dry weight) measurements and CO2 measurements can in principle be used 

to estimate growth rates, as there should be a linear relationship between the CO2 

concentration and cell mass. The CO2 concentration is measured online on a high-resolution 

timescale (5 min) while CDW is measured offline with a four-hour resolution starting from 18 

hours after inoculation.  

To estimate growth rates, we separated the growth into 5 different phases:  

1. Lag phase - immediate phase after inoculation with no / low growth 

2. Exponential growth - rapid growth after the initial lag phase 



3. First linear growth rate - until phosphate depletion 

4. Second linear growth rate – immediate phase after phosphate where there is still 

growth 

5. Third linear growth rate – no or very low growth 

From both Figure 2A and 3A we find a clear discrepancy between the CO2 curve and the CDW 

measurements after phosphate depletion. Thus, despite the lower resolution we decided to 

use the CDW measurements for the growth rate estimation except for the exponential growth 

phase. 

Exponential growth rate from CO2 

The exponential growth rate was estimated by fitting an exponential curve on the form  

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0𝑒𝑒𝜇𝜇𝜇𝜇 

 to the selected region of the CO2 measurements (Figure S10A and S10B), leading to an 

estimated growth rate of 0.25 h-1 ± 0.06 h-1 and 0.18 h-1 ± 0.02 h-1 for M145 and M1152, 

respectively. The uncertainty is estimated in a heuristic approach by observing the minimum 

and maximum values observed when changing the boundaries for the fitted function. 

Linear growth rates from CDW 
The growth rate is estimated by fitting linear slopes to the three different linear phases of 

growth (Figure S10C and S10D). The specific growth rate is then calculated using the following 

equation 

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋 →   𝜇𝜇 =
1
𝑋𝑋

 ⋅
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

 

where µ is the growth rate, X the CDW and 𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

 is the slope of the linear fit. Because the inverse 

of the CDW the rates can become very large when the cell mass is low, but we use the 

estimated growth rate in the exponential phase as an upper bound. Predicted growth rates 

and CDW estimates at the timepoints for the proteome samples are given for M145 and 

M1152 in Table S1 and Table S2, respectively.  

Uptake rates of glucose and glutamic acid 
The uptake rates for glucose and glutamate were also fitted using a piecewise linear function 

(Figure S10E-H). Using the same time intervals as for the CDW estimates gave a very poor fit 



for M1152 and we therefore decided to use different time intervals. From the fitted slopes we 

estimated the uptake rates using the equation given below: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑠𝑠𝑋𝑋 

where S is the substrate, 𝜇𝜇𝑠𝑠 the uptake rate and X the CDW at the given time. The uptake rates 

at 21 hours after inoculation seems to be too low for M145 and is caused by a too low estimate 

of the CDW. The uptake rates for glucose and given for M145 and M1152 in Table S1 and Table 

S2, respectively.  

Undecylprodigiosin (RED) production rate 
We used the same method as for the uptake rates of glucose and glutamic acid to estimate 

the production rate of undecylprodigiosin (RED). The M1152 did not produce any RED (as 

expected). However, for the M145 the amount of undecylprodigiosin was measured both 

using MS (mass spectrometry) and OD (optical density). From the MS data it looks like the 

production of RED stops after approximately 53 hours, but from the OD measurements we 

observe a continuous increase until the end of the experiment. The hypothesis is that RED is 

continuously degraded into derivatives which are still measurable using OD but not using MS 

because of the different masses of the derivatives. Therefore, we have extrapolated the 

production rate of RED using the timepoints between 40 and 53 hours to estimate the 

production rate of RED at 57 hours (Figure S10I) .  

Germicidin A and B production rates 
Production rates of germicidin A and B were fitted using linear regression of the last 6 data 

points across all three biological replicates for M145 (Table S1). For M1152, only the measured 

concentrations at 45 and 65 hours after inoculation were used to estimate the production rate 

of germicidin A and B (Table S2).  

 

memote snapshot report of Sco-GEM 
The following report (next page) was prepared by running memote version 0.9.12 in the command-
line from the directory of the cloned Sco-GEM repository with the command: memote report 
snapshot –custom-tests ComplementaryScripts/tests 

 

 



�����������	��
���������
�����

��
�������
�����

���	��
�������
�����

����������
������������
������

 ���!�"�"
#�!$
%�
&�'�!��
��"�!�
�����

�!�
(����
���

)	�����
�'
����������
*���������
������

����������
*���������
)�	
&������
���+��,��������������������������������,��+������,� -�-�%�'� ���.
.����
��"
/�	���

���..����
�/�	���
�
#��
������"

�	!�
��"��
%"����'��	(����
����������

,0���
(����
1�������

,0��,
(����
2���

�0���
(����
���3�	�����

,
���������
����	���

����
 ��4!�
����������

�0���
&!3������
����������
��
%"�������
���3�	�����

�
����������
5����!�
���	��

�
����������
5����!�
#�	�!��

�
��"�!�
���3�����

,,
)!	���
���������
1�������

,0���
)!	���
���������
1�������
5���
����	����

�
(	��3�	�
1�������

�,+ ,���6��6��
,�7��
8$3��"
*��1��"��



����������	
���������	���������	���	��������
���������������������������������������������������������

������	����������	���������	������� �
������

!"�	#����
$��

������ �	�	%�� ����	
���������
������

%�� ����	
����������	���	��������
&$���'(�������$��(��&�)�����)�����������&�

%�� ����	
���������	���������	���	��������

��������� #��������	%�� �����	*��+	�����������
�

#+���������� 	%�,����������	�	�"����	�������� 	%�� ���������
%�� �����	-��+	���������	������ ��	
����������

����
�"��� ���	%�� �����

����
%�� �����	-��+	������ ��	.����

����
%�� �����	*��+�"�	.�%

&�(
/�� ����	�	#��������	%�� �����	*��+�"�	.�%

��()
0�1���	������2��

���
3������	%�� �����	���������

��
3������	��������� �

0������0������0������0������0������0������0������0������0������0������
3������	����" ����	��	���"��	����"�

���$���$���$���$ ������ (���4��4��	(�5&�
02����	
��%�����



������������������������������������������������
	
�����������
����
����������������

������
��������

���
 ����
�����!�
��"

����


���#�
!�
��"

����
�� ���$�������

���#����#���������������������������������
!�
��"

����
�%
�����&� ���$�������

����������� �
��
�

������������������������
	
����������!�'�(�������
�$�������)�����

��������������������������������������������������
*������ ������
��
�%�������)�����

��+�,#��+�,#��+�,#��+�,#��+�,#��+�,#��+�,#��+�,#��+�,#��+�,#
*��-��*����� ���������
$������)�����

�
��
� ����.��.�,���/+,
01��
��"��������



��������������������������������
�����	
��

��
��
��	��
����������������������

������
��
��	��
���������������������

�����
����
�	����������������������

������
��
��	��������
�	����������������������

��� �
�����!	�
�����
�	����������� "���������

������
#$�%��&������
�	����������������������

������
'�(��)�����
�	������������ ���������

������
���*�����
�	������������+����������

�*�!!�)
�������������������������

 ��"�
��������������+���������

 ��"�
��	(��������
�	�����������������������

������
�����	
��

 ��
�	
�����	��

��� ,� ��	�*�)���	(�����������	���-��'�.���
���)��(
�����������

��	�*�)���	(�����������	���-��/	(!��
����)��(
�����������

��
�	�	.�'����
���
��	��
��������	(��������
�	�
�������������������� -�.	-�.	-�.	 ����0��0�����+

#$!��)�1�����)(�



�����
�������

	
			
			
			
			
		
��������������������������������������������

 !"#"$"$%%%%%%$ &���

���'(��)�*�+��������,�������������-�������
������,

(��)�*'���������,�����������������������-���������������������������������������������������� &���  	%!'%	'	.� 	/".
�01��,�+��-��,�



�����
���	�
�������
��	�����������������������������

�
�

����������
�������
������������

���������������������������������������������������������������������������������������������������������������� ����

 ����
������!���������������
"#$

�
�%���&���	������
'()

*��������&���	������
+$+

�����%�����
�������!��������������
',"

&���	������-
���������������������&�����
.'(

&���	������������������������������&�����
#." +)'��')�)(�+)/$(

�������0�������



���������	��
���������������������
����

����������������������������������
���

����
����

 �!�����"��#�����$
%��

&��'�(�)���������
*������

&����+����������,�)���������
*������

-�����������$���.�������(����.����!���������$�
����

-����� /�����0�����
����

-����!��$������1�����0�����
��2�

-����!��'�(�����������0��$0���������$��(�������������$0��!������
��0�,�.,�30�������45���6

���%
-����!��$������/�����0�����

��2�
-�����+ �����0�����

���2
-����!��$������������0�����

��22
-�����(����(��!��'�(������������0��������

����
-����!��'�(�����������0��$0���������$��(����������0������!����
�������$����

��%2
-����!��'�(�����7-����!������������$����

���%
-���������������������(����.����!���������$�

����
-����/�-�����0�����

+������ 5��������8�5�928
+
�����/������$�



Supplemental references 

Amara, A., Takano, E., and Breitling, R. (2018). Development and validation of an updated 

computational model of Streptomyces coelicolor primary and secondary metabolism. BMC 

Genomics 19, 519. 

Andrews, S. (2016). FastQC: a quality control tool for high throughput sequence data. 

Bar-Even, A., Flamholz, A., Noor, E., and Milo, R. (2012). Thermodynamic constraints shape 

the structure of carbon fixation pathways. Biochimica et Biophysica Acta (BBA) - 

Bioenergetics 1817, 1646–1659. 

Battke, F., and Nieselt, K. (2011). Mayday SeaSight: combined analysis of deep sequencing 

and microarray data. PLoS ONE 6, e16345. 

Bordel, S., Agren, R., and Nielsen, J. (2010). Sampling the Solution Space in Genome-Scale 

Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes. PLOS Computational 

Biology 6, e1000859. 

Bystrykh, L.V., Fernández-Moreno, M.A., Herrema, J.K., Malpartida, F., Hopwood, D.A., and 

Dijkhuizen, L. (1996). Production of actinorhodin-related “blue pigments” by Streptomyces 

coelicolor A3(2). J. Bacteriol. 178, 2238–2244. 

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C.A., Holland, T.A., 

Keseler, I.M., Kothari, A., Kubo, A., et al. (2014). The MetaCyc database of metabolic 

pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic 

Acids Res 42, D459–D471. 

Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation coefficient 

(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6. 

Claessen, D., Rink, R., Jong, W. de, Siebring, J., Vreugd, P. de, Boersma, F.G.H., Dijkhuizen, L., 

and Wösten, H.A.B. (2003). A novel class of secreted hydrophobic proteins is involved in 

aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes 

Dev. 17, 1714–1726. 



Cokelaer, T., Pultz, D., Harder, L.M., Serra-Musach, J., and Saez-Rodriguez, J. (2013). 

BioServices: a common Python package to access biological Web Services programmatically. 

Bioinformatics 29, 3241–3242. 

Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A., Dumontier, M., 

Finney, A., Golebiewski, M., Hastings, J., et al. (2011). Controlled vocabularies and semantics 

in systems biology. Mol. Syst. Biol. 7, 543. 

Distler, U., Kuharev, J., Navarro, P., Levin, Y., Schild, H., and Tenzer, S. (2014). Drift time-

specific collision energies enable deep-coverage data-independent acquisition proteomics. 

Nat. Methods 11, 167–170. 

Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBRApy: COnstraints-

Based Reconstruction and Analysis for Python. BMC Systems Biology 7, 74. 

Elbourne, L.D.H., Tetu, S.G., Hassan, K.A., and Paulsen, I.T. (2017). TransportDB 2.0: a 

database for exploring membrane transporters in sequenced genomes from all domains of 

life. Nucleic Acids Research 45, D320–D324. 

Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., 

Hatzimanikatis, V., and Palsson, B.Ø. (2007). A genome-scale metabolic reconstruction for 

Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. 

Molecular Systems Biology 3, 121. 

Flamholz, A., Noor, E., Bar-Even, A., and Milo, R. (2012). eQuilibrator—the biochemical 

thermodynamics calculator. Nucleic Acids Res 40, D770–D775. 

Fritzemeier, C.J., Hartleb, D., Szappanos, B., Papp, B., and Lercher, M.J. (2017). Erroneous 

energy-generating cycles in published genome scale metabolic networks: Identification and 

removal. PLOS Computational Biology 13, e1005494. 

Gomez-Escribano, J.P., and Bibb, M.J. (2011). Engineering Streptomyces coelicolor for 

heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology 4, 

207–215. 



Gubbens, J., Janus, M., Florea, B.I., Overkleeft, H.S., and van Wezel, G.P. (2012). 

Identification of glucose kinase-dependent and -independent pathways for carbon control of 

primary metabolism, development and antibiotic production in Streptomyces coelicolor by 

quantitative proteomics. Molecular Microbiology 86, 1490–1507. 

Haraldsdóttir, H.S., Cousins, B., Thiele, I., Fleming, R.M.T., and Vempala, S. (2017). CHRR: 

coordinate hit-and-run with rounding for uniform sampling of constraint-based models. 

Bioinformatics 33, 1741–1743. 

Hu, H., Zhang, Q., and Ochi, K. (2002). Activation of Antibiotic Biosynthesis by Specified 

Mutations in the rpoB Gene (Encoding the RNA Polymerase β Subunit) of Streptomyces 

lividans. Journal of Bacteriology 184, 3984–3991. 

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: 

paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 

1–13. 

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57. 

Jeske, L., Placzek, S., Schomburg, I., Chang, A., and Schomburg, D. (2019). BRENDA in 2019: a 

European ELIXIR core data resource. Nucleic Acids Res 47, D542–D549. 

Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

Research 28, 27–30. 

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach 

for understanding genome variations in KEGG. Nucleic Acids Research 47, D590–D595. 

Karp, P.D., Latendresse, M., Paley, S.M., Krummenacker, M., Ong, Q.D., Billington, R., 

Kothari, A., Weaver, D., Lee, T., Subhraveti, P., et al. (2016). Pathway Tools version 19.0 

update: software for pathway/genome informatics and systems biology. Brief Bioinform 17, 

877–890. 



Karp, P.D., Billington, R., Caspi, R., Fulcher, C.A., Latendresse, M., Kothari, A., Keseler, I.M., 

Krummenacker, M., Midford, P.E., Ong, Q., et al. (2019). The BioCyc collection of microbial 

genomes and metabolic pathways. Briefings in Bioinformatics 20, 1085–1093. 

Kaufman, D.E., and Smith, R.L. (1998). Direction Choice for Accelerated Convergence in Hit-

and-Run Sampling. Operations Research 46, 84–95. 

Keesey, J.K., Bigelis, R., and Fink, G.R. (1979). The product of the his4 gene cluster in 

Saccharomyces cerevisiae. A trifunctional polypeptide. J. Biol. Chem. 254, 7427–7433. 

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical 

Streptomyces Genetics (Norwich, UK: John Innes Foundation). 

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low 

memory requirements. Nat. Methods 12, 357–360. 

King, Z.A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J.A., Ebrahim, A., Palsson, B.O., 

Lewis, N.E., and J., H. (2016). BiGG Models: A platform for integrating, standardizing and 

sharing genome-scale models. Nucleic Acids Research 44, D515–D522. 

Kumelj, T., Sulheim, S., Wentzel, A., and Almaas, E. (2019). Predicting Strain Engineering 

Strategies Using iKS1317: A Genome-Scale Metabolic Model of Streptomyces coelicolor. 

Biotechnol. J. 14, 1800180. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., 

Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence 

Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose 

program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 

Lieven, C., Beber, M.E., Olivier, B.G., Bergmann, F.T., Ataman, M., Babaei, P., Bartell, J.A., 

Blank, L.M., Chauhan, S., Correia, K., et al. (2018). Memote: A community-driven effort 

towards a standardized genome-scale metabolic model test suite. BioRxiv 350991. 



Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and  

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 

Maurer, K.H., Pfeiffer, F., Zehender, H., and Mecke, D. (1983). Characterization of two 

glyceraldehyde-3-phosphate dehydrogenase isoenzymes from the pentalenolactone 

producer Streptomyces arenae. J. Bacteriol. 153, 930–936. 

Megchelenbrink, W., Huynen, M., and Marchiori, E. (2014). optGpSampler: An Improved 

Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks. PLOS 

ONE 9, e86587. 

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius 

Lukauskas, David C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, et al. 

(2018). mwaskom/seaborn: v0.9.0 (July 2018) (Zenodo). 

Moretti, S., Martin, O., Van Du Tran, T., Bridge, A., Morgat, A., and Pagni, M. (2016). 

MetaNetX/MNXref – reconciliation of metabolites and biochemical reactions to bring 

together genome-scale metabolic networks. Nucleic Acids Res 44, D523–D526. 

NCBI Resource Coordinators (2017). Database Resources of the National Center for 

Biotechnology Information. Nucleic Acids Research 45, D12–D17. 

Nieselt, K., Battke, F., Herbig, A., Bruheim, P., Wentzel, A., Jakobsen, Ø.M., Sletta, H., Alam, 

M.T., Merlo, M.E., Moore, J., et al. (2010). The dynamic architecture of the metabolic switch 

in Streptomyces coelicolor. BMC Genomics 11, 10. 

Noor, E. (2018). Removing both Internal and Unrealistic Energy-Generating Cycles in Flux 

Balance Analysis. ArXiv:1803.04999 [q-Bio]. 

Noor, E., Haraldsdóttir, H.S., Milo, R., and Fleming, R.M.T. (2013). Consistent Estimation of 

Gibbs Energy Using Component Contributions. PLOS Computational Biology 9, e1003098. 

Okonechnikov, K., Conesa, A., and García-Alcalde, F. (2016). Qualimap 2: advanced multi-

sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294. 



Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, 

enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat 

Protoc 2, 1896–1906. 

Rauch, G., Ehammer, H., Bornemann, S., and Macheroux, P. (2008). Replacement of two 

invariant serine residues in chorismate synthase provides evidence that a proton relay 

system is essential for intermediate formation and catalytic activity: Proton relay system in 

chorismate synthase. FEBS Journal 275, 1464–1473. 

Saier, M.H., Reddy, V.S., Tsu, B.V., Ahmed, M.S., Li, C., and Moreno-Hagelsieb, G. (2016). The 

Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44, D372–

D379. 

Sánchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P.-J., Kerkhoven, E.J., and Nielsen, J. (2017). 

Improving the phenotype predictions of a yeast genome-scale metabolic model by 

incorporating enzymatic constraints. Molecular Systems Biology 13, 935. 

Schendel, F.J., Mueller, E., Stubbe, J., Shiau, A., and Smith, J.M. (1989). Formylglycinamide 

ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, 

isolation, and characterization. Biochemistry 28, 2459–2471. 

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., 

Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association 

networks with increased coverage, supporting functional discovery in genome-wide 

experimental datasets. Nucleic Acids Res. 47, D607–D613. 

Talfournier, F., Stines-Chaumeil, C., and Branlant, G. (2011). Methylmalonate semialdehyde 

dehydrogenase from Bacillus subtilis : substrate specificity and coenzyme A binding. J. Biol. 

Chem. jbc.M110.213280. 

The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic 

Acids Res 47, D506–D515. 

Thiele, I., and Palsson, B.Ø. (2010). A protocol for generating a high-quality genome-scale 

metabolic reconstruction. Nature Protocols 5, 93–121. 



Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 

Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental 

algorithms for scientific computing in Python. Nat Methods 17, 261–272. 

Wang, H., Marcišauskas, S., Sánchez, B.J., Domenzain, I., Hermansson, D., Agren, R., Nielsen, 

J., and Kerkhoven, E.J. (2018). RAVEN 2.0: A versatile toolbox for metabolic network 

reconstruction and a case study on Streptomyces coelicolor. PLOS Computational Biology 14, 

e1006541. 

Wentzel, A., Bruheim, P., Øverby, A., Jakobsen, Ø.M., Sletta, H., Omara, W.A.M., Hodgson, 

D.A., and Ellingsen, T.E. (2012). Optimized submerged batch fermentation strategy for 

systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC Systems 

Biology 6, 59. 

Wessel, D., and Flügge, U.I. (1984). A method for the quantitative recovery of protein in 

dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143. 

 



206 Paper 4



Paper 5

Dynamic allocation of carbon 
storage and nutrient-dependent
exudation in a revised 
genome-scale model of Prochloro-
coccus

Shany Ofaim, Snorre Sulheim, Eivind Almaas, Daniel Sher 
and Daniel Segrè.
Frontiers in Genetics, 12, 91 (2021).



208 Paper 5



fgene-12-586293 February 2, 2021 Time: 18:54 # 1

ORIGINAL RESEARCH
published: 09 February 2021

doi: 10.3389/fgene.2021.586293

Edited by:
Karoline Faust,

KU Leuven, Belgium

Reviewed by:
Abhinav Achreja,

University of Michigan, United States
Adam Martiny,

University of California, Irvine,
United States

Steffen Waldherr,
KU Leuven, Belgium

*Correspondence:
Daniel Segrè

dsegre@bu.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal

Frontiers in Genetics

Received: 22 July 2020
Accepted: 14 January 2021

Published: 09 February 2021

Citation:
Ofaim S, Sulheim S, Almaas E,

Sher D and Segrè D (2021) Dynamic
Allocation of Carbon Storage

and Nutrient-Dependent Exudation
in a Revised Genome-Scale Model

of Prochlorococcus.
Front. Genet. 12:586293.

doi: 10.3389/fgene.2021.586293

Dynamic Allocation of Carbon
Storage and Nutrient-Dependent
Exudation in a Revised
Genome-Scale Model of
Prochlorococcus
Shany Ofaim1,2†, Snorre Sulheim1,3,4†, Eivind Almaas3,5, Daniel Sher2 and
Daniel Segrè1,6,7,8*

1 Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States, 2 Department
of Marine Biology, University of Haifa, Haifa, Israel, 3 Department of Biotechnology and Food Science, NTNU – Norwegian
University of Science and Technology, Trondheim, Norway, 4 Department of Biotechnology and Nanomedicine, SINTEF
Industry, Trondheim, Norway, 5 K.G. Jebsen Center for Genetic Epidemiology, NTNU – Norwegian University of Science
and Technology, Trondheim, Norway, 6 Department of Biomedical Engineering, Boston University, Boston, MA,
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Microbial life in the oceans impacts the entire marine ecosystem, global biogeochemistry
and climate. The marine cyanobacterium Prochlorococcus, an abundant component
of this ecosystem, releases a significant fraction of the carbon fixed through
photosynthesis, but the amount, timing and molecular composition of released
carbon are still poorly understood. These depend on several factors, including
nutrient availability, light intensity and glycogen storage. Here we combine multiple
computational approaches to provide insight into carbon storage and exudation
in Prochlorococcus. First, with the aid of a new algorithm for recursive filling of
metabolic gaps (ReFill), and through substantial manual curation, we extended an
existing genome-scale metabolic model of Prochlorococcus MED4. In this revised
model (iSO595), we decoupled glycogen biosynthesis/degradation from growth,
thus enabling dynamic allocation of carbon storage. In contrast to standard
implementations of flux balance modeling, we made use of forced influx of carbon
and light into the cell, to recapitulate overflow metabolism due to the decoupling
of photosynthesis and carbon fixation from growth during nutrient limitation. By
using random sampling in the ensuing flux space, we found that storage of
glycogen or exudation of organic acids are favored when the growth is nitrogen
limited, while exudation of amino acids becomes more likely when phosphate
is the limiting resource. We next used COMETS to simulate day-night cycles
and found that the model displays dynamic glycogen allocation and exudation of
organic acids. The switch from photosynthesis and glycogen storage to glycogen
depletion is associated with a redistribution of fluxes from the Entner–Doudoroff to
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the Pentose Phosphate pathway. Finally, we show that specific gene knockouts in
iSO595 exhibit dynamic anomalies compatible with experimental observations, further
demonstrating the value of this model as a tool to probe the metabolic dynamic of
Prochlorococcus.

Keywords: constraint-based reconstruction and analysis (COBRA), flux balance analysis (FBA), computation
of microbial ecosystems in time and space (COMETS), cyanobacteria, exudation, gap-filling algorithm,
photosynthesis

INTRODUCTION

Marine phytoplankton perform about one-half of the
photosynthesis on Earth (Field et al., 1998). Prochlorococcus is
one of the most abundant phytoplankton clades in the world’s
oceans and is estimated to produce about 4 Gt of organic carbon
annually (Flombaum et al., 2013). As such, these clades play a
key role in a variety of ecosystems (Partensky and Garczarek,
2010; Biller et al., 2015). Recent evolutionary studies suggested
several evolved metabolic innovations contributing to high
picocyanobacterial abundance in the harsh oligotrophic ocean
waters, usually limited by several nutrients such as nitrogen,
phosphorus, and iron. These innovations include a proteome
that contains less nitrogen rich amino acids (Gilbert and Fagan,
2011), membranes that contain glyco- and sulfolipids rather
than phospholipids (Van Mooy et al., 2006) and streamlining of
the genome associated with outsourcing of important cellular
functions to co-occurring organisms (Holtzendorff et al., 2008;
Partensky and Garczarek, 2010; Morris et al., 2012; Ma L. et al.,
2018; Braakman, 2019).

Another innovation employed by these organisms is an
increased metabolic rate that in turn manifest in the exudation
of organic compounds (Fogg et al., 1965; Mague et al., 1980;
López-Sandoval et al., 2013; Braakman et al., 2017; Braakman,
2019; Moran and Durham, 2019). Typically, 2–25% of the
carbon fixed by photosynthesis is released by exudation from
the cell, although values as high as 90% have been reported
(Bertilsson et al., 2005; López-Sandoval et al., 2013; Roth-
rosenberg et al., 2019; Szul et al., 2019). This exudation,
combined with cell death, lytic viral infections, and grazing
debris made by predators (“sloppy feeding”), makes dissolved
organic matter of phytoplankton origin omnipresent in natural
waters (Thornton, 2014). However, it is currently impossible to
provide a universal chemical description of dissolved organic
matter (Kujawinski, 2011; Arrieta et al., 2015; Moran et al.,
2016), partly because the exuded organic compounds differ
between strains and environmental conditions (Becker et al.,
2014; Ma X. et al., 2018). Nevertheless, in general, phytoplankton
exudate includes a small proportion of low-molecular weight
compounds, such as organic acids, carbohydrates, and amino
acids (Bertilsson et al., 2005), as well as a larger proportion of
complex, high-molecular weight compounds (Kujawinski, 2011).
Another strategy employed by these bacteria to manage their
carbon budget is the internal storage of carbon in polymeric
form, specifically, glycogen (Zinser et al., 2009; Reimers et al.,
2017; Luan et al., 2019). The extent to which Prochlorococcus,
in particular, also stores glycogen has recently been measured,

showing increased glycogen pools (up to 40 fg cell−1) in nitrogen-
limited conditions compared to nitrogen-replete (Szul et al.,
2019). Glycogen accumulates in the bacterial cell during the light
hours and was recently suggested to have two primary roles; as
energy storage in preparation for darkness and as a regulation
strategy to manage high-light photosynthesis products (Welkie
et al., 2019). The allocation of glycogen is suggested to be tightly
associated with the overflow metabolism hypothesis and also
known to be widely affected by nutrient limitations (Damrow
et al., 2016; Cano et al., 2018; Forchhammer and Schwarz, 2019;
Szul et al., 2019). Importantly, the carbon fixed and released
by phytoplankton is then used by heterotrophic organisms as a
source of energy, whereas the heterotrophic bacteria may recycle
nutrient elements and support the growth of phytoplankton
in other ways, as suggested by the Black Queen Hypothesis
(Amin et al., 2012; Morris et al., 2012; Moran et al., 2016; Cirri
and Pohnert, 2019; Moran and Durham, 2019). Thus, carbon
fixation, storage and release are tightly intertwined with microbial
interactions and microbial ecosystem dynamics.

Quantitative models at various scales have provided critical
insights into how ocean microbial ecosystems function, and how
they are related to broader biogeochemical cycles (Deutsch et al.,
2007; Follows et al., 2007; Arteaga et al., 2016; Coles et al.,
2017; Foster et al., 2018; Moradi et al., 2018; Nicholson et al.,
2018; Braakman, 2019; Oschlies et al., 2019; Ward et al., 2019).
Most of these models represent organisms in terms of simplified
stoichiometric reactions converting elements into biomass, thus
making it possible to incorporate biological processes into
dynamic-coupled Earth System models (Follows et al., 2007;
Reid, 2012). The exponential increase in genomic information
on marine organisms provides an opportunity to seek methods
to link such detailed genome-scale information to biochemical
flows (Coles et al., 2017). In recent years, genome-scale metabolic
models (GEMs), combined with linear programming, have
made it possible to produce testable predictions of metabolic
phenotypes of individual organisms or microbial communities
(Gu et al., 2019). This computational framework is based on
the identification of individual enzymes and transporters in
an organism’s genome, and on simplifying assumptions that
bypass the need for kinetic parameters (Maarleveld et al., 2013;
O’Brien et al., 2015; Casey et al., 2016; Kim et al., 2016;
Reimers et al., 2017). While genome-scale modeling has proven
to be a powerful approach in cyanobacterial model organisms
such as Synechocystis sp. PCC 6803, Synechococcus elongatus
PCC 7942 and Prochlorococcus MED4 (Kettler et al., 2007;
Knoop et al., 2013; Broddrick et al., 2016; Casey et al., 2016;
Yoshikawa et al., 2017), the exudation of organic compounds in
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phototrophic organisms has not been studied in detail through
Flux Balance Analysis (FBA) or similar methods (Varma and
Palsson, 1994; Orth et al., 2010). On the other hand, several
examples exist of FBA-based predictions of exudation-mediated
interactions between different species, including those generated
using the Computational of Microbial Ecosystems in Time and
Space (COMETS) platform (Harcombe et al., 2014). In fact,
FBA calculations also suggest that “costless” secretions (i.e.,
secretions that do not induce a fitness cost) might be quite
common, and can support the growth of co-occurring organisms
(Pacheco et al., 2018).

Experimental evidence and theoretical considerations indicate
that Prochlorococcus exudes different metabolites in a way that
strongly depends on environmental conditions (Dubinsky and
Berman-Frank, 2001; Szul et al., 2019) as well as on the strain’s
genetic makeup (Becker et al., 2014; Roth-rosenberg et al., 2019).
While GEMs can be used to predict these fluxes, they require
modifications to deal with processes not usually considered in
FBA, including: (a) the special nature of photon fluxes [which,
unlike molecular fluxes, cannot easily be “shut off” at short time
scales (Dubinsky and Berman-Frank, 2001)]; (b) the buffering
role of intracellular storage molecules such as glycogen. The
primary focus of this study is to obtain better knowledge of
the potential metabolic effect of a combination of key nutrients
(carbon, nitrogen, phosphorous, and light) and carbon fixation
rate on the allocation (including storage and exudation) of carbon
in Prochlorococcus using a revised genome-scale metabolic model
(Figure 1). We start by describing model revisions and updates
to capture the current, most complete metabolic knowledge
available for Prochlorococcus. Next, we use a variety of FBA
approaches to uncover the potential relationships between a set of
key nutrients, carbon storage and exudates in static and dynamic
(time dependent) settings. The implementation and use of these
approaches improve our understanding of the intricate metabolic
workings of Prochlorococcus and provide insights on its storage
and exudation trends under different environmental conditions.

MATERIALS AND METHODS

Model Update and Curation
The iJC568 genome-scale reconstruction of Prochlorococcus
marinus subsp. pastoris str. CMP1986 (referred to throughout the
manuscript as MED4) as described by Casey et al. (2016), was
used as the starting point for model enhancement. The update
process started with an in-depth study of the reconstructed
network and available knowledge not previously incorporated
into the model of the organism. During this process, we ended
up implementing the following specific steps of curation and
update: (i) A key modification to the model was the decoupling
between the glycogen storage flux and the biomass production.
In standard stoichiometric reconstructions for FBA modeling
(Thiele et al., 2011; Nogales et al., 2012; Feist et al., 2014;
Broddrick et al., 2016; Monk et al., 2017; Kavvas et al., 2018),
glycogen is listed as one of the biomass components, thus
accounting for the carbon flux into storage. However, given
the fixed stoichiometry of biomass composition, this classical

implementation cannot account for the time-dependent storage
and re-utilization of glycogen observed in picocyanobacteria.
We thus removed the glycogen from the biomass function
and streamlined the existing glycogen granule representation
to a direct link between ADP-Glucose to the production of
glycogen (Figure 1B). (ii) In addition to targeted refinement
of selected reactions, we used the KEGG database (Kanehisa
and Goto, 2000) to perform an extensive search for previously
known but missing metabolic reaction annotations. Indeed, we
found 354 reactions that could be potentially added to the
existing network. To incorporate this knowledge, we developed
a semi-automated algorithm (ReFill, described below). (iii) We
coupled the implementation of the algorithm with several steps
of manual curation. These included the addition of transports,
such as that of hydrogen peroxide and ethanol, known to
diffuse across the cell membrane (Seaver and Imlay, 2001;
Noreña-Caro and Benton, 2018), and the addition of the
complete Entner–Doudoroff pathway, that has recently been
discovered in cyanobacteria (Chen et al., 2016). Additionally,
we performed a BLAST search (Supplementary Material 1)
(Altschul et al., 1990) from which we identified 6PG-dehydratase
(EC: 4.2.1.12) encoded by PMM0774, thereby completing
this pathway in the model reconstruction. (iv) The revised
model was checked for redox and elemental balance. Since
the biomass function was based on experimental data (Casey
et al., 2016), it was not updated. In line with best practices, a
memote quality assessment (Supplementary Material 2) (Lieven
et al., 2020), as well as model files and a detailed changelog,
are provided at https://github.com/segrelab/Prochlorococcus_
Model. All reactions added to iJC658 to form iSO595 are found
in Supplementary Table 1 and modified reactions are found in
Supplementary Table 2.

ReFill Algorithm
Following an extensive search of literature and the KEGG
(Kanehisa and Goto, 2000), TransportDB (Elbourne et al., 2017)
and Metabolights (Haug et al., 2013) databases, we found a
large number of new or previously known but missing reaction,
transporter, and metabolite annotations. Adding large amounts
of data to an existing network might create new gaps and may
give rise to new blocked reactions and orphan metabolites that
in general reduce model quality and can convolute later curation
efforts, quality control or assessment of model predictions. To
add this knowledge to the network in a controlled approach,
we developed the semi-automated recursive algorithm ReFill
(Recursive Filler of metabolic gaps). The algorithm is based
on the principle of using diverse information, such as enzyme
and reaction annotations, and experimental data (such as
metabolomics), to selectively increase the metabolic knowledge of
an organism’s existing curated genome-scale metabolic network.
ReFill makes use of a repository of reactions, in this case
KEGG reaction annotations for MED4 absent from the model,
to construct all potential chains of reactions connecting two
metabolites in the existing network. It systematically tests the
potential of adding each new reaction and suggests adding it
only if it can be a part of a chain in which all the metabolites
are part of a path in the network (Figure 2). This prevents
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FIGURE 1 | iSO595 is an updated reconstruction of Prochlorococcus marinus MED4, featuring a complete Entner–Doudoroff pathway, rewired glycogen
metabolism and increased coverage of the genome. The central panel is a simplified illustration covering the most relevant metabolic features. (A) To simulate the
natural environmental constraints experienced by Prochlorococcus we use “Push-FBA”: Light and bicarbonate uptake are given a fixed flux independent of growth
rate. This contrasts standard FBA where light and bicarbonate would be “pulled” in by the demand needed to support maximal growth rate up to a given bound.
(B) We rewired the glycogen metabolism in iSO595 to study the dynamic allocation the dynamic allocation of glycogen. (C) Additionally, we implemented dynamic
light conditions and light absorption in COMETS to simulate the growth of P. marinus during the diel cycle. (D) iSO595 has increased coverage both in terms of
genes, reactions and metabolites compared to its ancestor iJC568.

the creation of new orphan metabolites and potential blocked
reactions. The algorithm starts by selecting a reaction from
the repository. It then inspects each metabolite in the reaction
for presence in the existing network. In case a metabolite is
not present, the set of available reactions is scanned for other
reactions using this metabolite as a substrate or product. If such
a reaction is found, it is added to the chain of potential reactions.
The algorithm then iteratively expands the chain until either
the repository is exhausted or all the metabolites in the most
recent reaction added are present in the network. After all the

possible chains of new reactions are expanded, the algorithm
examines the connectivity of all the metabolites in each chain
(see example in Figure 2B). Following the manual addition
of transporters found through TransportDB (Elbourne et al.,
2017) and Metabolights (Haug et al., 2013) (Study MTBLS567),
using the ReFill algorithm, we updated reactions that belong to
several different pathways, including metabolism of cofactors and
vitamins, carbohydrate metabolism, amino acid metabolism and
nucleotide metabolism. A complete list of added reactions can
be found in Supplementary Table 1. ReFill was coded in python
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FIGURE 2 | Schematic description of the ReFill algorithm. New reaction annotations are added only if all the metabolites are connected to the existing network.
A connected metabolite is denoted in a green circle. An orphan (unconnected metabolite) is denoted in a red circle. (A) A simple case in which all the metabolites
comply with the selection rule. (B) In case one or more metabolites are not connected to the existing network, other new reactions may be added to complete the
missing connections. For example, consider reaction a to be composed of two substrates and two products, one of which, x (a metabolite that did not exist in the
initial network), is not connected to the existing network and is currently an orphan. After the expansion step, the algorithm identified one reaction, b, in which x is
used as a substrate. All other metabolites in b exist in the network thus creating a path from reaction a through reaction b to the network.

3.7 and generates MATLAB-compatible files formatted to be used
with the COBRA Toolbox (Heirendt et al., 2019), including a list
of suggested reactions to add and their gene-reaction rules. Other
outputs include the added reaction chains and possible metabolic
circuits that can be formed by these additions.

Parameter Sampling
To study the effects of combinations of key nutrients on
glycogen production and exudation in the iSO595 model
we focused on four parameters representing the uptake
fluxes of light, bicarbonate, ammonium, and phosphate. Light
and inorganic carbon (bicarbonate) are the substrates for
photosynthesis, whereas nitrogen and phosphorus limit the
growth of Prochlorococcus in large regions of the world ocean
(Davey et al., 2008; Moore et al., 2013; Saito et al., 2014),
and nutrient limitation is likely to influence the exudation of
fixed carbon (Dubinsky and Berman-Frank, 2001). We sampled
10,000 different environmental conditions by drawing random
values from uniform distributions of these four parameters.
The range of each parameter was based on physiologically
relevant ranges we extracted from the literature and on the
requirement that each range covers important phase transitions,
such as nutrient and light limitations (Supplementary Table 3).

Light flux was converted from micromole quanta m−2 sec−1 to
mmol gDW−1h−1 similarly to Nogales et al. (2012) using 8%
photosynthesis efficiency rate (Zinser et al., 2009). All uptake
flux parameters are described in FBA-compatible units (mmol
gDW−1h−1), while corresponding values in biogeochemistry
relevant units are illustrated in Supplementary Table 3. As
MED4 is a photoautotroph, it is exposed to a constant stream
of light during daylight hours. The bacterium is then forced, or
‘pushed,’ to fix carbon even when there is not enough of other
elements, such as nitrogen or phosphate, to combine the fixed
carbon into biomass. To capture this phenomenon in silico we
developed a ‘push’-FBA framework where we fixed both upper
and lower uptake rates of light and bicarbonate (Figure 1A).
For the other sampled nutrients, ammonium and phosphate, we
defined standard FBA bounds where the maximal uptake rate
was set to the sampled value and the lower bound was set to
zero. Note that we only considered uptake of sulfur in the form
of sulfate (not hydrogen sulfide), and no upper limit was set
for the uptake of sulfate because of its abundance in seawater.
The maximum rate of RuBisCO (R00024) was fixed to 4.7 mmol
gDW−1 h−1, as previously reported (Casey et al., 2016). Before
sampling we blocked a set of artificial exchange reactions that
were added in the previous version of the model, most likely
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to allow export of dead-end metabolites that would otherwise
limit flux feasibility (Supplementary Table 4). Subsequently, we
removed all unconditionally blocked reactions in the model to
speed up computations. For each random sample, we first tested
the model for feasibility using FBA (Varma and Palsson, 1994). If
the solver returned a solution that was feasible and optimal, we
further calculated optimal fluxes with parsimonious FBA (Lewis
et al., 2010), and determined the range of possible fluxes at
optimum with Flux Variability Analysis (FVA) (Gudmundsson
and Thiele, 2010). Exchange fluxes from FBA, parsimonious
FBA and FVA were recorded and used in subsequent analyses.
All environmental sampling and calculations were performed
using CobraPy (Ebrahim et al., 2013) and GUROBI 8.1.1 (Gurobi
Optimization, Inc., Houston, TX, United States).

Statistical Analysis of the Sampled
Spaces
We sampled 10,000 different environmental conditions based
on the flux ranges described above, and analyzed the results
of FBA optimization, with the goal of characterizing the
distribution of, and correlation between, specific exchange
(import/export) fluxes. To that end, we calculated Pearson
correlations between exchange reaction fluxes in the sampling
data using the python (version 3.7) Pandas package version
1.0.3 (McKinney, 2010). While negative values are normally
used to define uptake in FBA, we converted them to
positive values for the uptake of light, bicarbonate, phosphate,
ammonium, and sulfate when calculating correlations to ease
interpretation of the results. We also performed hierarchical
clustering using the Nearest Point Algorithm in SciPy (Virtanen
et al., 2020) to sort the order of the compounds in the
correlation matrix.

We performed dimensionality reduction on normalized
exchange reaction fluxes using the T-distributed Stochastic
Neighbor Embedding (t-SNE) method (van der Maaten and
Hinton, 2008) in Scikit-learn (Pedregosa et al., 2011) with
perplexity of 50 and 3,000 iterations. The reaction fluxes were
normalized to [−1,1] by dividing by the maximum absolute
flux value of each reaction to ensure a consistent influence
on the t-SNE results from the different exchange reactions.
We considered other normalization schemes, in particular
standardization, but found that it was preferable not to center
the data to easily discriminate uptake and exudation without
further modifications in subsequent data visualization. Finally,
the t-SNE transformed data was clustered using HDBSCAN
(McInnes et al., 2017) with a minimum cluster size of
200. Transport of inorganic ions, water, and protons were
not considered when calculating correlations, dimensionality
reduction or clustering. We also discarded transport reactions
with no absolute flux value above 10−3 mmol gDW−1 h−1 in any
of the environmental samples.

Dynamic Modeling of Light Absorption
During the Diel Cycle in COMETS
Cyanobacteria follow a diel cycle. To capture this dynamic
behavior, we extended the Computation Of Microbial Ecosystems

in Time and Space (COMETS) platform (Harcombe et al., 2014;
Dukovski et al., 2020), and developed a module for diurnal-
cycle simulations allowing oscillations of light intensity and
light absorption. Attenuation of light through each grid cell was
modeled using the Beer–Lambert law, as described previously
(Yang, 2011; Gomez et al., 2014):

I (t, z) = I0(t)e−(aw+adwX(t))z (1)

Here, I(t, z) is the light irradiance given in
mmol photons m−2 s−1, t is the time, z is the depth (from
the top of the grid cell), adw is the cell- and wavelength-specific
absorption coefficient given in m2 gDW−1, aw the absorption
coefficient of pure water given in m−1, X(t) the biomass
concentration in gDW m−3, and I0 (t) the time-dependent
incident light irradiance at the top of the grid cell. In the current
version, we simplified the process by assuming that the light
irradiance is either monochromatic or a sum of the total light
bandwidth, and the absorption coefficient should match the
wavelength(s) of the light source. The total light attenuation (1I)
through a grid cell of thickness 1z is then

1I (t) = I (t, 0)− I (t, 1z) = I0
(

1− e−(aw+adwX(t))1z
)

(2)

The light absorbed by the cells is a fraction of the total light
attenuation, i.e.,

Iabs (t) =
1I(t) · adwX(t)
aw + adwX(t)

. (3)

The total number of photons absorbed per dry cell weight [8(t)]
in mmol photons gDW−1 s−1 by the cells within a grid cell of
thickness 1z, volume V, and surface area A is then

8 (t) =
Iabs (t) · A
X(t) · V

=
I0 (t)
1z

adw

aw + adwX(t)

(
1− e−(aw+adwX(t))1z

)
.

(4)
For all COMETS simulations presented here we have used

monochromatic light at 680 nm with a calculated biomass-
specific absorption coefficient adw as previously described (Morel
and Bricaud, 1981; Bricaud et al., 2004). Briefly, the biomass-
specific absorption is the weighted sum of the absorption
coefficients of the light-absorbing pigments divinyl-chlorophyll
A and B, since none of the other pigments in Prochlorococcus
absorb light at 680 nm. Additionally, to account for the discrete
distribution of chlorophyll into separate cells, the absorption
coefficient is scaled by the packaging factor. All coefficients
used to calculate light attenuation and absorption are provided
in Table 1.

The changing light conditions throughout a diel cycle was
modeled as

I0 (t) = Amax(sin (ωt) , 0), (5)

where the angular frequency is ω = 2π
T .

Following the development of the diel cycle simulation
capability in COMETS we set out to dynamically simulate the
growth of MED4. Since the nutrient uptake follows Michaelis–
Menten kinetics, we estimated the kinetic parameters Vmax
and Km using a heuristic approach from experimental data
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TABLE 1 | Coefficients and values used to calculate light absorption in COMETS.

Symbol Description Value Unit Reference

λ Wavelength 680 nm

aw Absorption coefficient of water at 680 nm 0.465 m−1 Pope and Fry, 1997

adw Biomass-specific absorption coefficient 0.285 m2 gDW−1

advchl−A Absorption coefficient of divinyl-chlorophyll A at 680 nm 0.0184 m2 (mg dvchl-A)−1 Bricaud et al., 2004

advchl−B Absorption coefficient of divinyl-chlorophyll B at 680 nm 0.0018 m2 (mg dvchl-B)−1 Bricaud et al., 2004

cdvchl−A Amount of divinyl-chlorophyll A 0.0163 g dvchl-A gDW−1 Casey et al., 2016

cdvchl−B Amount of divinyl-chlorophyll B 0.0013 g dvchl-B gDW−1 Casey et al., 2016

d Average diameter of MED4 0.6 µm

n′ Imaginary part of the refractive index at 675 nm 0.01377 Stramski et al., 2001

Q* Packaging effect at 680 nm 0.945

(Grossowicz et al., 2017), first by finding the range of possible
parameter combinations corresponding to the gross growth
rate of 0.5 d−1 (Supplementary Figure 1A), and secondly by
comparing predicted growth and ammonium depletion with
the experimental time-series cultivation data (Supplementary
Figures 1B,C). The estimated parameters were used in the
remaining dynamic FBA simulations in COMETS. Finally, to
simulate the dynamic storage and consumption of glycogen
we applied a multiple objective approach consisting of the
following four steps: (1) Maximization of the flux through the
non-growth associated maintenance reaction. Note that, this
reaction has an upper bound of 1 mmol gDW−1 h−1 (Casey
et al., 2016). In contrast to standard practice, where one uses
a lower bound for the non-growth associated maintenance
reaction, this method provides a more realistic scenario where
the organism continues to consume resources trying to keep
up cellular maintenance even at zero growth; (2) Maximization
of growth; (3) Maximization of glycogen production (storage);
and (4) Parsimonious objective which minimizes the sum of
absolute fluxes. To simulate nitrogen-abundant and nitrogen-
poor growth conditions, we used the PRO99 medium with
standard (800 µMol) and reduced (100 µMol) ammonium
concentration, as previously described (Grossowicz et al., 2017).
Light availability was modeled as described in Equation 5,
with an amplitude of 40 µmol Q m−2 s−1 and a period of
24 h. We also incorporated a death rate of 0.1 d−1, similar to
previous modeling efforts on Prochlorococcus (Grossowicz et al.,
2017). All parameter values used in the COMETS simulations
are given in Supplementary Table 5. All dynamic growth
simulations were performed using COMETS v.2.7.4 with the
Gurobi 8.1.1 solver, invoked using the associated MATLAB
toolbox1.

Simulating Growth of Knockout Mutants
Simulations of the knockout mutants where performed by
constraining the flux to zero for the reactions catalyzed by the
enzymes encoded by glgC (PMM0769) and gnd (PMM0770),
respectively. For glgC, the reaction is glucose-1-phosphate
adenylyltransferase (R00948) and for gnd the two reactions
are NADP+ and NAD+ associated 6-phosphogluconate

1https://github.com/segrelab/comets-toolbox

dehydrogenases (R01528 and R10221). We then used dynamic
FBA in COMETS with PRO99 medium (Moore et al., 2007) with
limited ammonium and diel light conditions to simulate growth
over 7 days. The growth curves where qualitatively compared
with experimental data from Shinde et al. (2020).

RESULTS AND DISCUSSION

Model Curation and Update
Prochlorococcus fixes carbon through photosynthesis during
daytime. Fixed carbon that is neither used for cell growth nor
stored in the form of glycogen is exuded. Here, we set out to
study dynamic changes in the carbon allocation and storage
mechanisms in MED4 using a genome-scale metabolic modeling
approach. To that end, we first re-curated and updated the
available iJC586 model (Casey et al., 2016), as described in detail
in the “Materials and Methods” section. The update involved
the development of a new semi-automatic algorithm (ReFill),
which can be broadly applied to other reconstructions (see
section Materials and Methods). Concurrently, we introduced
a revised mechanism for carbon storage, effectively treating
glycogen as an independent component of biomass. This
dynamic implementation of glycogen storage, introduced here
in dFBA, makes it possible for glycogen to be accumulated
and depleted at variable rates (Figure 1), aligning with the
overflow metabolism hypothesis (Szul et al., 2019; de Groot
et al., 2020). Other key modifications induced by the ReFill
algorithm and subsequent manual curation (see section Materials
and Methods) include the completion of the Entner–Doudoroff
(ED) pathway, recently discovered in cyanobacteria (Chen et al.,
2016) and proposed as the primary Prochlorococcus glucose
metabolism pathway under mixotrophic conditions (Biller et al.,
2018; Muñoz-Marín et al., 2020). Additional revisions focused on
the exudation of fixed carbon products from the cell and included
various transports such as pyruvate, fumarate, citrate, ethanol,
various nucleotides and hydrogen peroxide as well as metabolites
found in both the endo- and exo- metabolome of Prochlorococcus
(Metabolights study MTBLS567). The end product of our
revision, reconstruction iSO595, has 595 genes, 802 metabolites
and 994 reactions, i.e., 27 genes, 123 metabolites and 196
reactions more than the previous version, iJC568 (Figure 1D).
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Carbon Fixation and Storage Are
Affected by Nutrient Uptake Rate
Prochlorococcus thrive in oligotrophic environments (Johnson
et al., 2006), where, in surface waters, its growth and carbon
fixation rates are usually limited by the abundance of nitrogen,
phosphate or iron (Krumhardt et al., 2013; Saito et al., 2014;
Szul et al., 2019). Deeper in the water column Prochlorococcus
growth becomes limited by light (Vaulot et al., 1995). We set
out to explore the combined effect of different levels of light and
nutrients on carbon fixation, storage and exudation. Similarly
to Phenotypic Phase Plane analysis (Edwards et al., 2002), we
sought a global perspective of metabolism in this multi-parameter
spaces while explicitly taking into account the fact that the
inflow of light and bicarbonate may not be easily controllable
by the cell, and that Prochlorococcus may need to deal with
excess amounts of fixed carbon. Thus, in contrast to normal
FBA where the uptake of metabolites is constrained by an upper
bound, we introduced a ‘push- FBA’ approach (Figure 1A), in
which the influx of bicarbonate and light have a fixed imposed
value (see section “Materials and Methods” and Supplementary
Table 3 for specific values used). This approach attempts to mimic
implications of photosynthesis, in which light is the driving
force. Once photons are absorbed by the chlorophyll in the
photosynthetic reaction centers, most of the energy must be used
to produce ATP and reducing power, otherwise it is dissipated
in ways that may cause cell damage (Long et al., 1994). We
note that this modeling approach over-simplifies the complex
process of photosynthesis; for example, we do not account for
the dynamics of photoprotective pigments, which allow some of
the incident photons to be dissipated as heat. Indeed, the ratio
of the photoprotective pigment zeaxanthin to divinyl chlorophyll
a increases under nitrogen starvation, suggesting that, under
these conditions, some of the photon flux may be diverted from
the reaction centers (Steglich et al., 2001; Roth-rosenberg et al.,
2019). Nevertheless, Prochlorococcus undergo photoinhibition at
high light intensities (Moore et al., 1995; Mella-Flores et al.,
2012), despite the presence of photoprotective pigments and
other protection mechanisms such as cyclic electron flow [which
is represented in the model (Casey et al., 2016)]. Thus, these
mechanisms do not allow the cell to fully control the flux of
photons through the photosystem and the resulting fluxes in ATP
and reducing power, in a manner that is reflected in the push-FBA
approach. This subtle difference in applied constraints has major
effects on model predictions. While flux rearrangement is usually
viewed as a consequence of environmental nutrient limitations,
the results of this analysis show that a substantial rewiring of
fluxes is caused by this imposed excess of fixed carbon as well.

To understand how different combinations of environmental
parameters (availability of nitrogen, phosphate, light and
bicarbonate) affect the way Prochlorococcus can manage its
carbon budget, we implemented FBA under 10,000 randomly
sampled growth environments. Overall, this sampling analysis
demonstrated that the exudation of organic acids, amino-
acids, and nucleobases/nucleosides, as well as the extent of
glycogen storage, are strongly modulated by environmental
factors (Figure 3). To observe the full range of possible optimal

solutions per sample, we implemented and compared different
flux balance analysis methods, including flux variability analysis
(FVA) and parsimonious FBA (pFBA). These two methods
provide complementary insight: FVA estimates the range of
possible values for the flux of each reaction at the optimum,
providing insight into the structure of the phenotypic space
at maximal growth rate. In contrast, pFBA, by minimizing
the sum of fluxes at optimality, generates flux predictions less
likely to involve unrealistic loops, and thus potentially provides
predictions closer to experimental values (Lewis et al., 2010).
Together, these two FBA methods help analyze the solutions of
our high-dimensionality dataset.

Our predictions simulate the metabolic effects and variability
in glycogen production modulated by environmental constraints
(Figure 3). Glycogen production was observed only above light
levels of 50 mmol gDW−1 h−1 (corresponding to 7.5 micromole
quanta m−2 sec−1), and decreased as ammonium and phosphate
concentrations increase. These observations do not contradict
previous evidence showing increased glycogen accumulation in
faster growing cyanobacteria (Zavřel et al., 2019), rather they
align with previous studies finding that glycogen storage is
enhanced in nutrient-limiting conditions (Monshupanee and
Incharoensakdi, 2014; Szul et al., 2019). Interestingly, FVA
consistently predicted the glycogen production range minimal
value to be zero across all samples. This implies that glycogen
storage is possible, but not necessary to achieve optimal growth
in the feasible solution space. This was also the case in the more
stringent pFBA analysis, indicating that while metabolism may
be a strong modulator of glycogen metabolism, more types of
regulation, not accounted for in FBA, are involved. One example
of such regulation may be allosteric regulation of ADP-glucose
pyrophosphorylase by 3-phosphoglycerate (Iglesias et al., 1991),
possibly in combination with redox regulation (Díaz-Troya et al.,
2014). Specific regulation aimed at tuning up glycogen storage
may also occur at the transcriptional level, e.g., by multiple
transcription factors previously suggested to be involved in the
regulation of glycogen metabolism in fluctuating environments
(Luan et al., 2019).

The range of possible rates of glycogen production (through
FVA) displays a bell-shaped bicarbonate-dependent distribution,
indicating low storage of glycogen (zero flux) under both low
and high uptake rates of bicarbonate. When bicarbonate uptake
rates are low, all available carbon is diverted into growth. The
reduced glycogen storage at high bicarbonate uptake, when
RuBisCO is saturated, seems to be caused by the increased
ATP demand associated with the conversion of bicarbonate to
exudation-products, since the onset and rate of change of this
trade-off is modulated by the ATP availability, as demonstrated
by phenotypic phase planes analysis (Supplementary Figure 2).
This agrees with recent work suggesting that Prochlorococcus
use available ATP to drive pathways to saturation by shifting
reaction directions toward favoring dephosphorylation of ATP to
ADP, disrupting the cellular ATP/ADP ratio and increasing the
metabolic rate of the cell by pushing forward ATP consuming
reactions, until it is restored. Together with organic carbon
exudation this strategy allows for growth in lower nutrient
concentrations (Braakman, 2019).
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FIGURE 3 | Histograms of environmental sampling results provide insight into how the fixed uptake rates of light and bicarbonate and the upper bounds on
ammonium and phosphate affect exudation of organic acids, nucleobases and nucleotides, amino acids as well as glycogen storage. The y-axis represents the
fraction of all sampled environments yielding feasible models. Although we initially sample each parameter uniformly the final sample distribution is not uniform
because some combinations of parameters represent infeasible phenotypes (no solution can satisfy the constraints). The final sample distribution for each parameter
is therefore shown in the figure panels as a blue line. The black and red lines represent the histograms of samples where exudation is predicted by FBA and pFBA,
respectively. The shaded green region represents the span between histograms of samples as predicted by FVA: the lower and upper bounds represent the number
of samples where exudation is predicted using the minimum and maximum value of FVA, respectively. This FVA region covers the range of possible phenotypes. The
lower bound of the FVA region displays the number of samples where a certain outcome is obligatory to maximize growth, while the upper bound of the FVA region
displays the number of samples where the outcome is possible without reducing growth.

We next sought to explore the effect of combinations of key
nutrients on storage and exudation patterns in our sampling
spaces. To that end, we visualized the data using t-SNE clustering

(Figure 4A). To explore the strongest trends, we chose to
employ a high stringency approach and use only our set of
pFBA results in this context. Due to the nature of pFBA,
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FIGURE 4 | T-SNE clustering identifies typical phenotypes from the pFBA results from the random samples. (A) The random samples are reduced into two
dimensions with t-SNE. We have subsequently used HDBSCAN to cluster the data. HDBSCAN identified six disjoint clusters which represent different phenotypes.
(B) For each of the six clusters the mean uptake or exudation across all samples within the respective cluster is shown. Only exchange reactions with an absolute
flux above 1e-3 mmol gDW−1 h−1 in any of the random samples are included.
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any exudation observed in this analysis could not be easily
removed without imposing a cost on growth. We observed
6 typical phenotypes (clusters) rising out of the sampling
spaces (Figure 4). These 6 phenotypes are characterized by
subtle differences in combinations of environmental parameters,
yielding significantly different exudation patterns. Generally, we
observed the highest biomass value in phenotype 5, and the
lowest in phenotype 4. All key nutrient uptake rates were highly
variable (ranging from 33 to 44% variability). Phenotype 1 is
characterized by high light, bicarbonate, a maximum RuBisCO
flux (indicating maximal photosynthesis rate) but low nitrogen
uptake. Additionally, we observed high exudation of pyruvate
coming from the pentose phosphate and Entner–Doudoroff
pathways. Both are alternative routes coming out of carbon
fixation (Waldbauer et al., 2012; Chen et al., 2016). Together with
a low biomass value, this phenotype might indicate a scenario of
exudation due to overflow metabolism.

The two largest clusters (numbers 2 and 3, Supplementary
Figure 3), tie together high and low light, carbon and nitrogen
uptake rates, and different exudation patterns. Interestingly,
phenotype 3 (high light) showed exudation of fumarate and
malate while phenotype 2 (low light) did not. Recent work
suggested that, in high light conditions, fumarate is generated
through oxaloacetate and malate creating a broken acyclic form
of the TCA cycle, while in the dark, fluxes are diverted into
forming the cyclic form of it. This low light form of the TCA
cycle is then active and works toward energy generation (Xiong
et al., 2017). Similarly, we observed two forms of the TCA cycle
in the high and low light phenotypes (2 and 3, respectively)
with a difference in the direction of one reaction (KEGG
R00342, Supplementary Figure 3). Phenotype 2, describing low-
light conditions, showed the L-Malate/oxaloacetate balance to
shift in favor of oxaloacetate, completing the route toward 2-
Oxoglutarate, a key metabolite known to act as a starvation signal
and modulator of the C/N balance in cyanobacteria (Domínguez-
Martín et al., 2018; Zhang et al., 2018), and subsequently into
energy generation. On the other hand, Phenotype 3, describing
high light conditions, showed the L-Malate/oxaloacetate balance
to shift in favor of L-Malate and away from the formation of
2-oxoglutarate. In both phenotypes fumarate is converted to L-
Malate. While in Phenotype 2 it is fed into a semi-cyclic form of
the TCA cycle, fumarate is partly exuded and partly converted to
L-malate in phenotype 3, in agreement with overflow metabolism.

We observed a similar TCA cycle flux distribution in
phenotype 4 as in phenotype 3, leading to high exudation of
L-Malate. Interestingly, Phenotype 1 and 4 are comparable in
all key nutrients except light (High in phenotype 1 and low in
phenotype 4). As a result of an in-depth flux distribution analysis,
we observed a reaction direction change in UDP-glucose:NAD+
6-oxidoreductase [R00286, EC 1.1.1.22, PMM1261] between the
two phenotypes. In phenotype 4 this reaction shifted toward
the creation of UDP-glucose, a precursor for the production of
glycogen (due to the high stringency of this analysis we did
not observe the direct formation of glycogen). In phenotype 1,
this reaction favored the formation of UDP-glucuronate which
in turn was diverted into the formation of amino sugars. These
phenotypes may correlate to the 12:00 (phenotype 1) and 16:00

(phenotype 4) scenarios described in Szul et al. (2019). Finally,
Phenotypes 5 and 6 may represent a high-light nutrient-rich
environment resulting in a high biomass value.

Nutrient Uptake Rates Modulate
Exudation of Organic Compounds
The use of genome-scale metabolic models captures a
comprehensive picture of the metabolic processes taking place
in the cell, including those that lead to metabolite exudation.
From the random sampling of environmental conditions, we
identified conditions in which organic acids must be exuded.
This was noticeable by a non-zero lower bound of the FVA
region (Figure 3). Interestingly, organic acids were more likely
to be exuded when the growth became limited by phosphate or
nitrogen. Since Prochlorococcus is known to thrive in oligotrophic
ocean gyres where nitrogen or phosphate is limited (Partensky
et al., 1999; Flombaum et al., 2013), this represents a likely
natural phenotype, and as such, supports previous findings
(Bertilsson et al., 2005; Szul et al., 2019). Costly metabolites,
essential for cell survival and growth, such as amino acids,
nucleobases and nucleotides, tend to be exuded in nitrogen
and carbon rich conditions and might be a result of overflow
metabolism (Cano et al., 2018; Pacheco et al., 2018). To explore
this phenomenon in further detail, we looked into exudation
patterns of specific metabolites as a function of key nutrient
limitations (Figure 5). Of the environmental factors, the uptake
of nitrogen (ammonium) is a decisive factor differentiating
between exudation of organic acids or amino acids. While it
is positively correlated with the exudation of nitrogen-rich
compounds such as amino acids, it is negatively correlated with
exudation of organic acids and glycogen. Additionally, glycogen
formation is positively correlated with the exudation of malate,
citrate, fumarate, and succinate, which are most of the TCA cycle
constituents. This is in line with previous findings suggesting
the re-direction of carbon metabolism toward the formation
of macromolecules (including glycogen) in nitrogen limiting
conditions (Forchhammer and Selim, 2019; Szul et al., 2019).
Thus, our reconstruction captured known possible aspects of the
carbon/nitrogen balance in Prochlorococcus.

Finally, we observed a general pattern of strong positive
correlations between amino acids, nucleobases, nucleosides, as
well as a range of other compounds. In an interesting deviation
from this general pattern, L-aspartate showed a decreased
correlation with other exudates. L-aspartate, together with its role
in protein nucleic acid biosynthesis, can serve as a precursor
for nitrogen storage metabolites such as polyamines (Szul
et al., 2019). Indeed, we observed a slightly stronger correlation
between L-aspartate and the uptake of nitrogen compared
to other amino acids. Finally, In contrast to other amino
acids, L-aspartate is negatively correlated with light uptake and
hydrogen peroxide exudation. Hydrogen peroxide is produced
from L-aspartate and oxygen by L-aspartate oxidase [R00481, EC
1.4.3.16, PMM0100]. L-amino acid oxidases have been previously
described in cyanobacteria and have been related to the use of
amino acids as carbon sources (Campillo-Brocal et al., 2015). The
production of hydrogen peroxide is also strongly correlated with
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FIGURE 5 | Correlations between maximal FVA values demonstrate which compounds can be secreted in similar environmental conditions. There are two clearly
correlated groups of compounds: The first group comprises nucleobases, nucleotides, and amino acids while the second contains organic acids, glycogen and
glycerol 3-phosphate. From the correlation of each of these groups with the uptake bounds on ammonium and phosphate we observe that these factors determine
which of the groups can be secreted. Note that the environmental constraints have been converted to positive values prior to calculating the correlation.

light, a result consistent with the expectation that reactive oxygen
species are created during photosynthesis.

Dynamic Allocation of Carbon Storage
Nutrient and light limitations are well-known modulators of
carbon storage in Prochlorococcus (Zinser et al., 2009; Szul
et al., 2019). Recent work has suggested the storage of carbon
to be one of the major metabolic tasks during the day-night
cycle (Cano et al., 2018; Szul et al., 2019; Shinde et al., 2020).

To explore time-modulated trade-offs and trends related to
carbon storage, we performed in silico dynamic FBA diel-cycle
simulations using the Computational of Microbial Ecosystems
in Time and Space (COMETS) platform (Harcombe et al., 2014;
Dukovski et al., 2020). COMETS is a population-based dynamic
FBA implementation that can simulate growth of millions of
cells, but it is important to note that the framework assumes
continuous growth on a mesoscopic scale and does therefore
not explicitly account for individual cells nor regulated cell
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cycle events such as cell division. COMETS relies on uptake
flux kinetic information such as Km and Vmax to simulate
the spatial growth and exudation patterns of microbes in a
simulated discretized time course. To improve the accuracy and
biological relevance of our simulations we used kinetic constants
either obtained from experimental measurements reported in
the literature (Krumhardt et al., 2013; Hopkinson et al., 2014)
(Supplementary Table 3) or from fitting model simulations to
measured growth and depletion of ammonium rates (Grossowicz
et al., 2017). We found Km and Vmax values of 0.39 mM and
0.9 mmol gDW−1 h−1 for the uptake of ammonium to best fit
the experimental data (Grossowicz et al., 2017) (Supplementary
Figure 1). Surprisingly, the estimated Km value is 3 orders
of magnitude larger than previous estimates (Marañón et al.,
2013). This deviation might occur due to several reasons.
First, our estimates are based on the assumption that growth
is indeed limited by the availability of ammonium and that
Prochlorococcus operates at a metabolic state close to optimal
growth. Other limiting factors or non-optimal growth may lead
to incorrect estimates. Nevertheless, it is challenging to fit Km
values accurately from batch cultivation data, as this parameter
only becomes dominant in the short time-period immediately
prior to nutrient depletion. Furthermore, the accuracy of the
fitted Km value can suffer from the rather high uncertainty in
the measured ammonium concentrations, although not more
than 2 orders of magnitude (Supplementary Figure 1). Finally,
we raise the possibility that Prochlorococcus may possess several
ammonium transporters with different affinity as previously
observed in marine eukaryotic phytoplankton (McDonald et al.,
2010) and cyanobacteria (Kashyap and Singh, 1985). To account
for this uncertainty we assessed the sensitivity of our dFBA
simulations to variation in the value of Km, in combination with
variation in the maximum uptake rate of ammonium (Vmax),
ammonium concentration and light intensity (Supplementary
Figure 4). The parameters that dictate light absorption (Table 1)
affect the number of available photons, so that by including
a large span of light intensities in our sensitive analysis, we
also cover their associated uncertainty. We find that ammonium
concentration, kinetic coefficients for ammonium uptake and
the availability of photons combined have a considerable impact
on whether carbon is stored during daytime in our dynamic
FBA simulations, underpinning the importance of accurate and
context specific values for these parameters. This echoes the
well-known modulation of carbon storage by nutrient and light
limitations (Zinser et al., 2009; Szul et al., 2019). We note that,
despite the potentially large impact of Prochlorococcus on marine
nitrogen budgets, to the best of our knowledge there are currently
no direct experimental measurements of the kinetics (Km, Vmax)
of nitrogen uptake by Prochlorococcus.

Since the tight coupling between carbon and nitrogen
metabolism in cyanobacteria is known to influence carbon
allocation and storage (Zhang et al., 2018; Szul et al., 2019), it was
chosen as a case study. As such, we focused in more detail on
the dynamic changes in metabolism in nitrogen-abundant and
nitrogen-poor media, as previously defined (Grossowicz et al.,
2017). Specifically, we set out to explore glycogen production
and consumption with COMETS in these conditions (Figure 6).

We did not observe glycogen storage in nitrogen-abundant
simulations, and therefore no growth nor cellular maintenance
during nighttime. One explanation for this may arise from the
limitations of the platform. First, the simulations performed in
this work were performed in a modeling framework based on
linear programming with ordered multi-objective optimization:
(1) cellular maintenance; (2) growth; (3) glycogen storage. Thus,
glycogen was only stored when there were excess energy and
carbon available, which occurred when growth was nitrogen
limited. Although some observer bias was introduced by
assuming that Prochlorococcus is striving toward these cellular
objectives, in this order, we found a reasonable conceptual
alignment with previous work showing that bacterial metabolism
balances a trade-off between maximal growth and the ability to
adapt to changing conditions (Schuetz et al., 2012). However, we
do note that one might obtain more nuanced results by taking
into account suboptimal solutions (Segrè et al., 2002; Fischer and
Sauer, 2005; Wintermute et al., 2013), and that real phenotypes
may be in the continuum between the two extremes found here.
Another limitation that might affect glycogen storage is the
lack of regulatory mechanisms not usually accounted for in this
version of dynamic FBA (Mahadevan et al., 2002). The addition of
regulatory layers or more specifically tailored objective functions,
such as global optimization over the entire diel cycle (Reimers
et al., 2017), could lead to smaller but non-zero generation of
glycogen also during nitrogen-rich conditions.

In agreement with previous work (Szul et al., 2019), under
nitrogen-limiting conditions, glycogen accumulates throughout
the day and is subsequently used to support respiration and
growth during the night (Figure 6A). However, the predicted
glycogen storage is simulated as not sufficient to support neither
growth nor cellular maintenance throughout the night. This
may contribute to the increased death rate during night time
(Zinser et al., 2009; Ribalet et al., 2015). However, the rate
of glycogen depletion is strongly affected by the associated
kinetic parameters (Supplementary Figure 5), emphasizing
the value of accurate kinetic coefficients for GlgP, the main
contributing factor to glycogen catabolism in bacteria (Dauvillée
et al., 2005; Alonso-Casajús et al., 2006; Fu and Xu, 2006),
in future work. Furthermore, the rate of glycogen depletion
might be modulated by transcriptional regulation. Previous
work suggested that glycogen storages are not sustained beyond
dawn, because the genes responsible for glycogen degradation
are depleted during the first 5 h of darkness (Biller et al.,
2018). Interestingly, the model predicts consumption of glycogen
during dusk to increase growth when photosynthesis is declining
(Figure 6), closely resembling observations in Synechococcus, in
particular for the 1kaiC mutant with a dysfunctional circadian
clock (Diamond et al., 2015). The closer resemblance of the
dysfunctional circadian clock phenotype might be a result from
the limitations of the applied modeling framework that does not
include regulatory mechanisms.

The switch from photosynthesis at daytime to glycogen
consumption at nighttime is reflected in the metabolic shifts
observed in key pathways (Figure 6B). Interestingly, we
observed higher fluxes through the Calvin cycle in nitrogen-poor
conditions. This difference may be caused by the increased
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FIGURE 6 | Insight into metabolic rearrangements during the diel cycle. (A) Light irradiance, biomass and glycogen storage throughout the diel cycle. We observe
that the largest accumulated growth is found in the nitrogen-abundant condition (green), but glycogen is only predicted to be stored in the nitrogen-poor condition
(orange). (B) The flux distributions shifts when the metabolism switches from photosynthesis to glycogen catabolism, displayed by five reactions representing the
Calvin Cycle (CBB), Glycogen metabolism, lower part of glycolysis, The Entner–Doudoroff (ED) and the Pentose Phosphate Pathway (PPP). (C) iSO595 predicts that
the depletion of glycogen is accompanied by exudation of formate and pyruvate.

ATP demand necessary to support higher growth rates in
nitrogen-abundant conditions. Additionally, our simulations
predicted that the use of the Entner–Doudoroff pathway during
photosynthesis creates precursor metabolites for growth during

light hours, and a shift to the Pentose Phosphate Pathway (PPP)
during nighttime. This trend might occur as an alternative for
generating NADPH (Supplementary Figure 6). Upregulation of
the PPP enzymes during dusk and the first half of the night time
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was also observed in the proteome of Prochlorococcus (Waldbauer
et al., 2012). Several enzymatic transformations participate in
both the Calvin cycle and the PPP, although in opposite directions
(Waldbauer et al., 2012). These transformations were captured
in our simulations, specifically as demonstrated by transketolase
(Figure 6B). Additionally, the consumption of glycogen during
nighttime might lead to exudation of pyruvate and formate
(Figure 6C). This prediction is supported by recent observations;
formate is exuded during both nutrient-replete and phosphate-
limited growth in Prochlorococcus strains MED4 and MIT9312
under constant light (Bertilsson et al., 2005), as well as when
phosphonates are metabolized in Prochlorococcus strain MIT9301
(Sosa et al., 2019). Thus, Prochlorococcus are potential formate
sources for heterotrophs. However, degradation of phosphonates
yields formate as an immediate byproduct, and the current
modeling framework is not suited to evaluate whether a
equally high amount of intracellular formate is feasible during
glycogen degradation, as intracellular metabolite concentrations
are not readily represented in dFBA. Pyruvate exudation in
Prochlorococcus is indicated from previous co-cultivations with
SAR11 (Becker and Hogle, 2019), and from upregulation of
genes encoding pyruvate kinase and a pyruvate efflux transporter
during extended darkness (Biller et al., 2018). Furthermore,
pyruvate is exuded when fixed carbon is consumed in the closely
related strains S. elongatus PCC 7942 and S. sp. PCC 6803
(Carrieri et al., 2012; Benson et al., 2016).

The shift from photosynthesis and carbon fixation to glycogen
catabolism is also associated with a switch in production and
consumption of energetic cofactors (Supplementary Figure 6).
Generation of ATP is performed concomitantly by ATP synthase
in both the thylakoid membrane and the periplasmic membrane
during photosynthesis. The periplasmic ATP synthase is first
driven by reduced cofactors (NADPH) generated by the electron
transport chain in the light-dependent part of photosynthesis
(Supplementary Figure 6). ATP is consumed by two separate
processes: growth- and maintenance-associated reactions reach
a threshold once growth is limited by the nitrogen abundance,
while the recycling of precursors for the Calvin cycle follows the
shape of light absorption throughout the day. In agreement with
previous work (Park and Choi, 2017), our model predicted higher
rates of NADPH production than NADH.

Next, we explored the ability of our model to dynamically
capture biologically relevant phenotypes by performing dynamic
FBA simulations of knock-out mutants in Prochlorococcus,
focusing on two gene deletions disrupting different parts of
glycogen metabolism. 1glgC breaks synthesis of ADP-glucose
and thus the storage of glycogen and 1gnd, knocking out
6-phosphogluconate dehydrogenase, a key reaction in the
Pentose Phosphate pathway found to fuel the Calvin cycle
with precursor metabolites during the onset of photosynthesis
(Shinde et al., 2020). Our dynamic FBA simulations in COMETS
(Supplementary Figure 7) showed similar growth between 1gnd
and the wild type and slightly lower growth for 1glgC. We set
out to compare these observations with available experimental
data. Since genetic tools for the modification of Prochlorococcus
are still lacking (Laurenceau et al., 2020), we chose data from
the closely related cyanobacteria Synechococcus as recent work

described the impact of 1glgC and 1gnd on its growth during
diel cycles (Shinde et al., 2020). Indeed, we found very good
agreement between measured and predicted growth for both
the wild-type and 1glgC mutant where glycogen storage is
disrupted (Shinde et al., 2020) (Supplementary Figure 7). One
of the notable limitations of dynamic FBA is the ability to
quantify intermediates and precursor pools that might drive the
initiation of a pathway. This comes mainly from the assumption
of a quasi steady-state of intracellular metabolite pools at each
time point. Although the comparison is strictly qualitative and
concerns strains with known differences (Mary et al., 2004),
these findings demonstrated the ability of our reconstruction to
capture metabolic trends in response to genetic perturbations,
indicating that iSO595 will be a valuable tool in future research
of Prochlorococcus. Overall, our dynamic simulations display
biological and physiological behaviors that are consistent with
expectations, and at the same time provide valuable insight into
the putative internal metabolic processes that might modulate
the Prochlorococcus growth under environmental and genome-
induced constraints.

CONCLUSION

Our study provides a detailed systematic view of the underlying
metabolic trends modulating carbon storage and exudation in
Prochlorococcus. Prochlorococcus is known to interact with other
bacteria in its surroundings (Sher et al., 2011; Aharonovich
and Sher, 2016; Biller et al., 2018; Hennon et al., 2018). It
is currently impossible to predict the fluxes of organic matter
(or of the myriad metabolites comprising it, such as amino
acids, sugars, and organic acids) between phytoplankton and
bacteria. Yet, quantifying such fluxes and predicting them from
genomic surveys, as shown here, serves a number of roles: (1) It
can provide experimentally testable and mechanistic hypotheses
on inter-microbial exchanges and competition, (2) It has the
potential to increase knowledge about the specific metabolites
that may mediate these interactions; and (3) It would enable the
construction of improved models of biogeochemical cycles which
consider the diverse and powerful metabolic capabilities of the
ocean microbiome.

Genome-scale metabolic-network reconstructions are
powerful tools, but not without limitations. Mainly, the
predictive accuracy rests on the quality and completeness of
the metabolic network. The construction and curation of these
metabolic networks depend heavily on data availability and
annotation accuracy, which may be scarce for less studied
organisms. Several methods have been developed to fill the gaps
of incomplete network reconstructions. For example, FastGapFill
incorporates missing knowledge from universal, non-organism
specific data (Thiele et al., 2014), ModelSEED fills gaps through
the use of thermodynamic parameters and FBA simulations to
achieve minimal growth (Henry et al., 2010), and MENECO uses
a topology graph based approach to look for minimal sets of
metabolic reactions that support growth and the producibility
of target metabolites (Prigent et al., 2017). In this work we
used a novel semi-automated gap-filling method (ReFill) to
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increase existing knowledge in the reconstruction by up to 25%.
In contrast to other standard gap filling approaches, ReFill has
the specific capability to add individual reactions through a
recursive algorithm that guarantees complete connectivity to the
existing network, incorporating the maximal possible amount
of validated, organism specific metabolic annotations. However,
this approach employs high stringency and thus adds limited
amounts of knowledge. Considering that Prochlorococcus strains
have some of the smallest known genomes among free-living
organisms, a 25% increase in knowledge serves as a significant
improvement in the predictive capacity of the model. However,
reconstruction of high-quality genome-scale metabolic models is
an iterative process, where new data, knowledge, and scope create
opportunities for further model improvement. One example
of this possibility is the CO2 concentrating mechanisms in
Prochlorococcus. This mechanism is known to be sustained
by proton and ion gradients across the cell membrane at an
energetic cost (Hopkinson et al., 2014; Burnap et al., 2015).
However, the comprehensive knowledge and annotation of ion
transporters necessary to model this mechanism are lacking, and
are therefore not included in iSO595. With the advancement of
data collection and annotation tools, together with the use of
ReFill or similar algorithms, metabolic knowledge can be added
to such reconstructions, improving their predictive abilities and
mimicry of biological and physiological processes.

Other limitations of static and dynamic FBA simulations
include the inability to represent metabolite concentrations and
the lack of regulatory effects. Furthermore, since COMETS, like
most other implementations of dFBA, simulates millions of
asynchronously growing and dividing cells on the mesoscopic
scale, cell cycle processes are not readily incorporated into
this framework. Thus, future extensions to this work include
the implementation of cell division in Prochlorococcus, known
to occur in the afternoon (Vaulot et al., 1995). Another
improvement would be an accurate representation of the costs
associated with light damage and the production of protective
pigments required to combat excessive light absorption.
This could potentially be accounted for by extending the
current Prochlorococcus GEM to a framework that includes
macromolecular allocation, such as Resource Balance Analysis
(Goelzer et al., 2011), conditional FBA (Rügen et al., 2015)
or models of metabolism and macromolecular expression (ME
models) (Thiele et al., 2012). Along these lines, one could relate
mortality with an inability to maintain basic cellular functions,
rather than a fixed death rate. However, the relationship between
cell mortality and metabolism is not well constrained, and its
representation in dFBA models is currently rudimentary. Future
work is needed to better understand mortality and represent it
in models of cell metabolism, ecosystems and biogeochemistry.
Finally, our findings contribute to a growing body of work
on the underlying metabolic mechanisms modulating the
metabolic success of Prochlorococcus. The approaches shown
here provide systematic insights corroborated in recent and
well-known works and provide strong foundations for future
studies of Prochlorococcus metabolism with particular interest in
its interaction with other microorganisms and the effects of these
on community composition and larger biogeochemical cycles.
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Supplementary Figure 1 | Estimation of kinetic parameters for the uptake of
ammonium in Prochlorococcus. (A) All combinations of Km and Vmax along the
red trajectory matches the observed gross growth rate of 0.5 d−1 (Grossowicz
et al., 2017). However, when we compare the dynamics of cell density (B) and
ammonium concentration (C) we find that the best overall prediction is achieved
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using Km = 0.39 mM and Vmax = 0.9 mmol gDW−1 h−1 (marked by an orange
dot in A).

Supplementary Figure 2 | ATP availability influence modulates the trade-off
between glycogen storage and growth. Phenotypic phase planes (Edwards et al.,
2002) illustrate the combined effect of glycogen storage and bicarbonate uptake
on the maximal growth rate. Compared to the base model (A), we observe how
that the trade-off is strongly affected by modulated ATP availability, either from an
artificial reaction providing extra ATP (B) or by increasing (C) or decreasing (D) the
amount of available light. Increasing ATP allows more glycogen storage without
reducing the growth rate.

Supplementary Figure 3 | TCA cycle flux diagram differences between the most
common phenotypes. Flux diagrams of the TCA cycle in the most common
phenotypes 2 (colored orange) and 3 (colored blue). Reactions are denoted by
KEGG reaction ids. Reaction colors correspond to cluster colors presented
in Figure 4.

Supplementary Figure 4 | Sensitivity analysis of dFBA simulations to
variability in ammonium concentration, kinetic coefficients of ammonium uptake
and light irradiance. (A) These phase diagrams display which combinations of Km

and Vmax, describing the uptake of ammonium, that leads to glycogen
accumulation (red area) at peak irradiance based on the light amplitude and
ammonium concentration used to simulate nitrogen-abundant (left) and
nitrogen-poor (right) conditions in Figure 6. In the orange area no glycogen
accumulation is predicted as the growth is limited by the available light, rather than
nitrogen. (B) These panels display similar phase diagrams as in (A), but for
different amplitudes of light irradiance, represented by black curves, and for
different ammonium concentrations (indicated on top of each panel). The number
written on each black curve represents the light irradiance amplitude in µmol Q
m−2 s−1. The ammonium concentration in the top left panel is equal to the
concentration in our simulated nitrogen-poor conditions, and thus, the 40.0
40 µmol Q m−2 s−1 line in this panel is identical to the boundary between the two
phases in the right panel in (A). The range of ammonium concentrations is chosen
so that it covers both our simulated environment and the ammonium
concentration in oligotrophic oceans. The blue, green, and orange points display
the combinations of Km and Vmax used/provided in this work and previous
publications, respectively.

Supplementary Figure 5 | Sensitivity analysis of dFBA simulation to different
parametrization of glycogen consumption. All panels display results obtained from
dFBA simulations in COMETS with different combinations of Km and Vmax,
describing the consumption of intracellular glycogen, with line colors and
corresponding values as shown in the bottom right corner color matrix. The purple
color corresponds to the values used to run the simulations shown in Figure 6.
(A) Growth curves. (B) Accumulated glycogen per gram dry weight of biomass.
(C) Predicted reaction fluxes for the same 8 reactions as shown in Figure 6.

Supplementary Figure 6 | The transition from daytime to nighttime is associated
with a drastic change in the production and consumption of the energy-carrying

cofactors. The figure panels show the major sources (left) and drains (right) of the

cofactors ATP, NAPDH and NADH. The legend shows the reaction IDs used in
iSO595. (A) ATP is produced by both the thylakoid (R00086th) and the
periplasmic (R00086p) ATP synthase during daytime, but mostly by the
periplasmic ATP synthase (respiration) during nighttime. ATP is consumed by
reactions associated with growth (BIOMASS and BProtein), cellular maintenance
(Maintenance) and storage of glycogen (R00948) in addition to reactions recycling

precursors for the Calvin cycle (R01512 and R01523) and acetyl-CoA carboxylase
(R00742). (B) NADPH is produced by ferredoxin reductase (fdr) during daytime
and by the pentose phosphate pathway (R02736 and R01528) during nighttime.
The NADPH is either used to drive the proton gradient across the periplasmic
membrane (NADPHDHp) or in Gluconeogenesis (R01063) to refuel the Calvin
cycle during photosynthesis. (C) NADH production is correlated with the growth
rate and dominated by pyruvate dehydrogenase (R00209) during daytime and the
glycine cleavage system (R01221) during nighttime. NADH is consumed by
6-phosphogluconate dehydrogenase (reverse, R10221) during daytime, NADH
transhydrogenase (R00112) solely during dusk and concomitant with
methylenetetrahydrofolate reductase (R07168) during nighttime.

Supplementary Figure 7 | Predicted growth curves show good agreement in a
qualitative comparison with experimental growth of Synechococcus. To compare
growth data we have overlaid growth curves predicted for the wild-type, the
1glgC-mutant and the 1gnd-mutant of Prochlorococcus with experimental OD
measurements of Synechococcus elongatus PCC 794 (Shinde et al., 2020). We
find a very good agreement for the wild-type and 1glgC-mutant, but not for the
1gnd-mutant. The lower panel shows how the model predicts the allocation and
consumption of each of the three strains.

Supplementary Table 1 | List of reactions added to iJC568 to form iSO595.

Supplementary Table 2 | List of reactions from iJC568 that are modified
in iSO595.

Supplementary Table 3 | Parameter ranges used in the sampling of
nutrient environments.

Supplementary Table 4 | List of blocked exchange reactions prior to sampling of
nutrient environments.

Supplementary Table 5 | Parameter values used to run dynamic FBA in
COMETS.

Supplementary Material 1 | Results from the BLAST-search used to identify
6PG-dehydratase (EC: 4.2.1.12) encoded by PMM0774 in P. marinus MED4.

Supplementary Material 2 | Memote snapshot report of iSO595.
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Dukovski, I., Bajić, D., Chacón, J. M., Quintin, M., Vila, J. C., Sulheim, S., et al.
(2020). ). Computation of Microbial Ecosystems in Time and Space (COMETS):
An Open Source Collaborative Platform for Modeling Ecosystems Metabolism.
Available online at: http://arxiv.org/abs/2009.01734 (accessed December 17,
2020).

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). COBRApy:
constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7:74.
doi: 10.1186/1752-0509-7-74

Edwards, J. S., Ramakrishna, R., and Palsson, B. O. (2002). Characterizing the
metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77,
27–36. doi: 10.1002/bit.10047

Elbourne, L. D. H., Tetu, S. G., Hassan, K. A., and Paulsen, I. T. (2017).
TransportDB 2.0: a database for exploring membrane transporters in sequenced
genomes from all domains of life. Nucleic Acids Res. 45, D320–D324. doi:
10.1093/nar/gkw1068

Feist, A. M., Nagarajan, H., Rotaru, A. E., Tremblay, P. L., Zhang, T., Nevin, K. P.,
et al. (2014). Constraint-based modeling of carbon fixation and the energetics of
electron transfer in geobacter metallireducens. PLoS Comput. Biol. 10:e1003575.
doi: 10.1371/journal.pcbi.1003575

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary
production of the biosphere: integrating terrestrial and oceanic components.
Science 281, 237–240. doi: 10.1126/science.281.5374.237

Fischer, E., and Sauer, U. (2005). Large-scale in vivo flux analysis shows rigidity
and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37,
636–640. doi: 10.1038/ng1555

Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., et al.
(2013). Present and future global distributions of the marine Cyanobacteria
Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 110, 9824–
9829. doi: 10.1073/pnas.1307701110

Fogg, G. E., Nalewajko, C., and Watt, W. D. (1965). Extracellular products of
phytoplankton photosynthesis. Proc. R. Soc. London. Ser. B. Biol. Sci. 162,
517–534. doi: 10.1098/rspb.1965.0054

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W. (2007). Emergent
biogeography of microbial communities in a model ocean. Science 315, 1843–
1846. doi: 10.1126/science.1138544

Forchhammer, K., and Schwarz, R. (2019). Nitrogen chlorosis in unicellular
cyanobacteria – a developmental program for surviving nitrogen deprivation.
Environ. Microbiol. 21, 1173–1184. doi: 10.1111/1462-2920.14447

Forchhammer, K., and Selim, K. A. (2019). Carbon/nitrogen homeostasis control
in cyanobacteria. FEMS Microbiol. Rev. 44, 33–53. doi: 10.1093/femsre/fuz025

Foster, S. Q., Al-haj, A., Church, M. J., van Dijken, G. L., Dutkiewicz, S., Fulweiler,
R. W., et al. (2018). Ecological control of nitrite in the upper ocean. Nat.
Commun. 9:1206. doi: 10.1038/s41467-018-03553-w

Fu, J., and Xu, X. (2006). The functional divergence of two glgP homologues in
Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 260, 201–209. doi: 10.1111/
j.1574-6968.2006.00312.x

Gilbert, J. D. J., and Fagan, W. F. (2011). Contrasting mechanisms of proteomic
nitrogen thrift in Prochlorococcus. Mol. Ecol. 20, 92–104. doi: 10.1111/j.1365-
294X.2010.04914.x

Goelzer, A., Fromion, V., and Scorletti, G. (2011). Cell design in bacteria as
a convex optimization problem. Automatica 47, 1210–1218. doi: 10.1016/j.
automatica.2011.02.038

Gomez, J. A., Höffner, K., and Barton, P. I. (2014). DFBAlab: a fast and reliable
MATLAB code for dynamic flux balance analysis. BMC Bioinform. 15:409.
doi: 10.1186/s12859-014-0409-8

Frontiers in Genetics | www.frontiersin.org 18 February 2021 | Volume 12 | Article 586293



fgene-12-586293 February 2, 2021 Time: 18:54 # 19

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

Grossowicz, M., Roth-Rosenberg, D., Aharonovich, D., Silverman, J., Follows, M. J.,
and Sher, D. (2017). Prochlorococcus in the lab and in silico: the importance of
representing exudation. Limnol. Oceanogr. 62, 818–835. doi: 10.1002/lno.10463

Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., and Lee, S. Y. (2019). Current status
and applications of genome-scale metabolic models. Genome Biol. 20, 1–18.
doi: 10.1186/s13059-019-1730-3

Gudmundsson, S., and Thiele, I. (2010). Computationally efficient flux variability
analysis. BMC Bioinform. 11:489. doi: 10.1186/1471-2105-11-489

Harcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H.,
et al. (2014). Metabolic resource allocation in individual microbes determines
ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. doi: 10.
1016/j.celrep.2014.03.070

Haug, K., Salek, R. M., Conesa, P., Hastings, J., De Matos, P., Rijnbeek, M.,
et al. (2013). MetaboLights–an open-access general-purpose repository for
metabolomics studies and associated meta-data. Nucleic Acids Res. 41, 781–786.
doi: 10.1093/nar/gks1004

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., et al.
(2019). Creation and analysis of biochemical constraint-based models using
the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702. doi: 10.1038/s41596-018-
0098-2

Hennon, G. M., Morris, J. J., Haley, S. T., Zinser, E. R., Durrant, A. R., Entwistle, E.,
et al. (2018). The impact of elevated CO 2 on Prochlorococcus and microbial
interactions with â € helper’ bacterium Alteromonas. ISME J. 12, 520–531.
doi: 10.1038/ismej.2017.189

Henry, C. S., Dejongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and Stevens, R. L.
(2010). High-throughput generation, optimization and analysis of genome-
scale metabolic models. Nat. Biotechnol. 28, 977–982. doi: 10.1038/nbt.1672

Holtzendorff, J., Partensky, F., Mella, D., Lennon, J.-F., Hess, W. R., and Garczarek,
L. (2008). Genome streamlining results in loss of robustness of the circadian
clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol.
Rhythms 23, 187–199. doi: 10.1177/0748730408316040

Hopkinson, B. M., Young, J. N., Tansik, A. L., and Binder, B. J. (2014). The minimal
CO2-concentrating mechanism of prochlorococcus spp. MED4 is effective and
efficient. Plant Physiol. 166, 2205–2217. doi: 10.1104/pp.114.247049

Iglesias, A. A., Kakefuda, G., and Preiss, J. (1991). Regulatory and structural
properties of the cyanobacterial ADPglucose pyrophosphorylases. Plant
Physiol. 97, 1187–1195. doi: 10.1104/pp.97.3.1187

Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and
Chisholm, S. W. (2006). Niche partitioning among Prochlorococcus ecotypes
along ocean-scale environmental gradients. Science 311, 1737–1740. doi: 10.
1126/science.1118052

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 28, 27–30.

Kashyap, A. K., and Singh, D. P. (1985). Ammonium transport in unicellular
cyanobacterium anacystis nidulans. J. Plant Physiol. 121, 319–330. doi: 10.1016/
S0176-1617(85)80025-0

Kavvas, E. S., Seif, Y., Yurkovich, J. T., Norsigian, C., Poudel, S., Greenwald,
W. W., et al. (2018). Updated and standardized genome-scale reconstruction of
Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of
physiological conditions. BMC Syst. Biol. 12:25. doi: 10.1186/s12918-018-0557-
y

Kettler, G. C., Martiny, A. C., Huang, K., Zucker, J., Coleman, M. L., Rodrigue, S.,
et al. (2007). Patterns and implications of gene gain and loss in the evolution of
prochlorococcus. PLoS Genet. 3:e231. doi: 10.1371/journal.pgen.0030231

Kim, J., Fabris, M., Baart, G., Kim, M. K., Goossens, A., Vyverman, W., et al. (2016).
Flux balance analysis of primary metabolism in the diatom Phaeodactylum
tricornutum. Plant J. 85, 161–176. doi: 10.1111/tpj.13081

Knoop, H., Gründel, M., Zilliges, Y., Lehmann, R., Hoffmann, S., Lockau, W.,
et al. (2013). Flux balance analysis of cyanobacterial metabolism: the metabolic
network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9:e1003081. doi:
10.1371/journal.pcbi.1003081

Krumhardt, K. M., Callnan, K., Roache-Johnson, K., Swett, T., Robinson, D.,
Reistetter, E. N., et al. (2013). Effects of phosphorus starvation versus limitation
on the marine cyanobacterium ProchlorococcusMED4 I: uptake physiology.
Environ. Microbiol. 15, 2114–2128. doi: 10.1111/1462-2920.12079

Kujawinski, E. B. (2011). The impact of microbial metabolism on marine dissolved
organic matter. Ann. Rev. Mar. Sci. 3, 567–599. doi: 10.1146/annurev-marine-
120308-081003

Laurenceau, R., Bliem, C., Osburne, M. S., Becker, J. W., Biller, S. J., Cubillos-
Ruiz, A., et al. (2020). Toward a genetic system in the marine cyanobacterium
Prochlorococcus. Access Microbiol. 2:e000107. doi: 10.1099/acmi.0.000107

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya,
A. D., et al. (2010). Omic data from evolved E. coli are consistent with computed
optimal growth from genome−scale models. Mol. Syst. Biol. 6:390. doi: 10.1038/
msb.2010.47

Lieven, C., Beber, M. E., Olivier, B. G., Bergmann, F. T., Ataman, M., Babaei, P.,
et al. (2020). MEMOTE for standardized genome-scale metabolic model testing.
Nat. Biotechnol. 38, 272–276. doi: 10.1038/s41587-020-0446-y

Long, S. P., Humphries, S., and Falkowski, P. G. (1994). Photoinhibition of
photosynthesis in nature.Annu. Rev. Plant Physiol. PlantMol. Biol. 45, 633–662.
doi: 10.1146/annurev.pp.45.060194.003221

López-Sandoval, D. C., Rodríguez-Ramos, T., Cermeño, P., and Marañón, E.
(2013). Exudation of organic carbon by marine phytoplankton: dependence
on taxon and cell size. Mar. Ecol. Prog. Ser. 477, 53–60. doi: 10.3354/meps1
0174

Luan, G., Zhang, S., Wang, M., and Lu, X. (2019). Progress and perspective on
cyanobacterial glycogen metabolism engineering. Biotechnol. Adv. 37, 771–786.
doi: 10.1016/j.biotechadv.2019.04.005

Ma, L., Calfee, B. C., Morris, J. J., Johnson, Z. I., and Zinser, E. R. (2018).
Degradation of hydrogen peroxide at the ocean’s surface: the influence of the
microbial community on the realized thermal niche of Prochlorococcus. ISME
J. 12, 473–484. doi: 10.1038/ismej.2017.182

Ma, X., Coleman, M. L., and Waldbauer, J. R. (2018). Distinct molecular signatures
in dissolved organic matter produced by viral lysis of marine cyanobacteria.
Environ. Microbiol. 20, 3001–3011. doi: 10.1111/1462-2920.14338

Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., and Bruggeman,
F. J. (2013). Basic concepts and principles of stoichiometric modeling of
metabolic networks. Biotechnol. J. 8, 997–1008. doi: 10.1002/biot.201200291

Mague, T. H., Friberg, E., Hughes, D. J., and Morris, I. (1980). Extracellular
release of carbon by marine phytoplankton; a physiological approach. Limnol.
Oceanogr. 25, 262–279. doi: 10.4319/lo.1980.25.2.0262

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic Flux Balance
Analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340. doi:
10.1016/S0006-3495(02)73903-9

Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-Ramos, T., Sobrino,
C., Huete-Ortega, M., et al. (2013). Unimodal size scaling of phytoplankton
growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16,
371–379. doi: 10.1111/ele.12052

Mary, I., Tu, C.-J., Grossman, A., and Vaulot, D. (2004). Effects of high light
on transcripts of stress-associated genes for the cyanobacteria Synechocystis
sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology 150,
1271–1281. doi: 10.1099/mic.0.27014-0

McDonald, S. M., Plant, J. N., and Worden, A. Z. (2010). The mixed lineage nature
of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a
case study of Micromonas. Mol. Biol. Evol. 27, 2268–2283. doi: 10.1093/molbev/
msq113

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: hierarchical density based
clustering. J. Open Source Softw. 2:205. doi: 10.21105/joss.00205

McKinney, W. (2010). pandas: a Foundational Python Library for Data Analysis
and Statistics | R (Programming Language) | Database Index. Available online
at: https://www.scribd.com/document/71048089/pandas-a-Foundational-
Python-Library-for-Data-Analysis-and-Statistics (accessed April 29, 2020).

Mella-Flores, D., Six, C., Ratin, M., Partensky, F., Boutte, C., Le Corguillé, G., et al.
(2012). Prochlorococcus and synechococcus have evolved different adaptive
mechanisms to cope with light and UV Stress. Front. Microbiol. 3:285. doi:
10.3389/fmicb.2012.00285

Monk, J. M., Lloyd, C. J., Brunk, E., Mih, N., Sastry, A., King, Z., et al. (2017).
iML1515, a knowledgebase that computes Escherichia coli traits.Nat. Biotechnol.
35, 904–908. doi: 10.1038/nbt.3956

Monshupanee, T., and Incharoensakdi, A. (2014). Enhanced accumulation of
glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light
intensities in the cyanobacterium Synechocystis sp. PCC 6803. J. Appl. Microbiol.
116, 830–838. doi: 10.1111/jam.12409

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W.,
et al. (2013). Processes and patterns of oceanic nutrient limitation. Nat. Geosci.
6, 701–710. doi: 10.1038/ngeo1765

Frontiers in Genetics | www.frontiersin.org 19 February 2021 | Volume 12 | Article 586293



fgene-12-586293 February 2, 2021 Time: 18:54 # 20

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

Moore, L. R., Coe, A., Zinser, E. R., Saito, M. A., Sullivan, M. B., Lindell, D.,
et al. (2007). Culturing the marine cyanobacterium Prochlorococcus. Limnol.
Oceanogr. Methods 5, 353–362. doi: 10.4319/lom.2007.5.353

Moore, L. R., Goericke, R., and Chisholm, S. W. (1995). Comparative physiology
of Synechococcus and Prochlorococcus: influence of light and temperature on
growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser.
116, 259–275.

Moradi, N., Liu, B., Iversen, M., Kuypers, M. M., Ploug, H., and Khalili, A. (2018).
A new mathematical model to explore microbial processes and their constraints
in phytoplankton colonies and sinking marine aggregates. Sci. Adv. 4, 1–10.
doi: 10.1126/sciadv.aat1991

Moran, M. A., and Durham, B. P. (2019). Sulfur metabolites in the pelagic ocean.
Nat. Rev. Microbiol. 17, 665–678. doi: 10.1038/s41579-019-0250-1

Moran, M. A., Kujawinski, E. B., Stubbins, A., Fatland, R., Aluwihare, L. I., Buchan,
A., et al. (2016). Deciphering ocean carbon in a changing world. Proc. Natl.
Acad. Sci. U.S.A. 113, 3143–3151. doi: 10.1073/pnas.1514645113

Morel, A., and Bricaud, A. (1981). Theoretical results concerning light absorption
in a discrete medium, and application to specific absorption of phytoplankton.
Deep Sea Res. Part A Oceanogr. Res. Pap. 28, 1375–1393. doi: 10.1016/0198-
0149(81)90039-X

Morris, J. J., Lenski, R. E., and Zinser, E. R. (2012). The black queen hypothesis:
evolution of dependencies through adaptive gene loss. MBio 3:e00036-12. doi:
10.1128/mBio.00036-12

Muñoz-Marín, M. C., Gómez-Baena, G., López-Lozano, A., Moreno-Cabezuelo,
J. A., Díez, J., and García-Fernández, J. M. (2020). Mixotrophy in
marine picocyanobacteria: use of organic compounds by Prochlorococcus
and Synechococcus. ISME J. 14, 1065–1073. doi: 10.1038/s41396-020-0
603-9

Nicholson, D. P., Stanley, R. H. R., and Doney, S. C. (2018). A Phytoplankton
model for the allocation of gross photosynthetic energy including the trade-
offs of diazotrophy. J. Geophys. Res. Biogeosci. 123, 1796–1816. doi: 10.1029/
2017JG004263

Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O., and Thiele, I. (2012).
Detailing the optimality of photosynthesis in cyanobacteria through systems
biology analysis. Proc. Natl. Acad. Sci. U.S.A. 109, 2678–2683. doi: 10.1073/pnas.
1117907109

Noreña-Caro, D., and Benton, M. G. (2018). Cyanobacteria as photoautotrophic
biofactories of high-value chemicals. J. CO2 Util. 28, 335–366. doi: 10.1016/j.
jcou.2018.10.008

O’Brien, E. J., Monk, J. M., and Palsson, B. O. (2015). Using genome-scale models to
predict biological capabilities. Cell 161, 971–987. doi: 10.1016/j.cell.2015.05.019

Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is flux balance analysis? Nat.
Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Oschlies, A., Koeve, W., Landolfi, A., and Kähler, P. (2019). Loss of fixed nitrogen
causes net oxygen gain in a warmer future ocean. Nat. Commun. 10, 1–7.
doi: 10.1038/s41467-019-10813-w

Pacheco, A. R., Moel, M., and Segrè, D. (2018). Costless metabolic secretions as
drivers of interspecies interactions in microbial ecosystems. Nat. Commun.
10:103.

Park, J., and Choi, Y. (2017). Cofactor engineering in cyanobacteria to overcome
imbalance between NADPH and NADH: a mini review. Front. Chem. Sci. Eng.
11:66–71. doi: 10.1007/s11705-016-1591-1

Partensky, F., and Garczarek, L. (2010). Prochlorococcus: advantages and limits
of minimalism. Ann. Rev. Mar. Sci. 2, 305–331. doi: 10.1146/annurev-marine-
120308-081034

Partensky, F., Hess, W. R., and Vaulot, D. (1999). Prochlorococcus, a marine
photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63,
106–127. doi: 10.1128/mmbr.63.1.106-127.1999

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res 12,
2825–2830.

Pope, R. M., and Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure
water. II. Integrating cavity measurements. Appl. Optics 33, 8710–8723. doi:
10.1364/AO.36.008710

Prigent, S., Frioux, C., Dittami, S. M., Thiele, S., Larhlimi, A., Collet, G., et al.
(2017). Meneco, a topology-based gap-filling tool applicable to degraded
genome-wide metabolic networks. PLoS Comput. Biol. 13:e1005276. doi: 10.
1371/journal.pcbi.1005276

Reid, A. (2012). Incorporating Microbial Processes into Climate Change Models.
A Report by the American Academy of Microbiology. Washington, DC.

Reimers, A.-M., Knoop, H., Bockmayr, A., and Steuer, R. (2017). Cellular trade-
offs and optimal resource allocation during cyanobacterial diurnal growth. Proc.
Natl. Acad. Sci. U.S.A. 114:201617508. doi: 10.1073/pnas.1617508114

Ribalet, F., Swalwell, J., Clayton, S., Jiménez, V., Sudek, S., Lin, Y., et al. (2015).
Light-driven synchrony of Prochlorococcus growth and mortality in the
subtropical Pacific gyre. Proc. Natl. Acad. Sci. U.S.A. 112, 8008–8012. doi: 10.
1073/pnas.1424279112

Roth-rosenberg, D., Aharonovich, D., Omta, A.-W., Follows, M. J., and Sciences,
P. (2019). Dynamic macromolecular composition and high exudation rates in
Prochlorococcus. bioRxiv [Preprint]. doi: 10.1101/828897

Rügen, M., Bockmayr, A., and Steuer, R. (2015). Elucidating temporal resource
allocation and diurnal dynamics in phototrophic metabolism using conditional
FBA. Sci. Rep. 5, 1–16. doi: 10.1038/srep15247

Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G. R., Post,
A. F., et al. (2014). Multiple nutrient stresses at intersecting Pacific Ocean
biomes detected by protein biomarkers. Science 345, 1173–1177. doi: 10.1126/
science.1256450

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012).
Multidimensional optimality of microbial metabolism. Science 336, 601–604.
doi: 10.1126/science.1216882

Seaver, L. C., and Imlay, J. A. (2001). Hydrogen peroxide fluxes and
compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182–
7189. doi: 10.1128/JB.183.24.7182-7189.2001

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural
and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–
15117. doi: 10.1073/pnas.232349399

Sher, D., Thompson, J. W., Kashtan, N., Croal, L., and Chisholm, S. W. (2011).
Response of Prochlorococcus ecotypes to co-culture with diverse marine
bacteria. ISME J. 5, 1125–1132. doi: 10.1038/ismej.2011.1

Shinde, S., Zhang, X., Singapuri, S. P., Kalra, I., Liu, X., Morgan-Kiss, R. M.,
et al. (2020). Glycogen metabolism supports photosynthesis start through the
oxidative pentose phosphate pathway in cyanobacteria. Plant Physiol. 182,
507–517. doi: 10.1104/pp.19.01184

Sosa, O. A., Casey, J. R., and Karl, D. M. (2019). Methylphosphonate oxidation
in Prochlorococcus strain MIT9301 supports phosphate acquisition, formate
excretion, and carbon assimilation into purines. Appl. Environ. Microbiol.
85:e00289-19. doi: 10.1128/AEM.00289-19

Steglich, C., Behrenfeld, M., Koblizek, M., Claustre, H., Penno, S., Prasil, O.,
et al. (2001). Nitrogen deprivation strongly affects Photosystem II but not
phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium
Prochlorococcus marinus. Biochim. Biophys. Acta Bioenerg. 1503, 341–349. doi:
10.1016/S0005-2728(00)00211-5

Stramski, D., Bricaud, A., and Morel, A. (2001). Modeling the inherent optical
properties of the ocean based on the detailed composition of the planktonic
community. Appl. Optics 18, 2929–2945. doi: 10.1364/ao.40.002929

Szul, M. J., Dearth, S. P., Campagna, S. R., and Zinser, E. R. (2019). Carbon fate
and flux in prochlorococcus under nitrogen limitation. mSystems 4:e00254-18.
doi: 10.1128/msystems.00254-18

Thiele, I., Fleming, R. M. T., Que, R., Bordbar, A., Diep, D., and Palsson, B. O.
(2012). Multiscale modeling of metabolism and macromolecular synthesis in
E. coli and its application to the evolution of codon usage. PLoS One 7:e45635.
doi: 10.1371/journal.pone.0045635

Thiele, I., Hyduke, D. R., Steeb, B., Fankam, G., Allen, D. K., Bazzani, S., et al.
(2011). A community effort towards a knowledge-base and mathematical model
of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5:8.
doi: 10.1186/1752-0509-5-8

Thiele, I., Vlassis, N., and Fleming, R. M. T. (2014). FASTGAPFILL: efficient
gap filling in metabolic networks. Bioinformatics 30, 2529–2531. doi: 10.1093/
bioinformatics/btu321

Thornton, D. C. O. (2014). Dissolved organic matter (DOM) release by
phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46.
doi: 10.1080/09670262.2013.875596

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Van Mooy, B. A. S., Rocap, G., Fredricks, H. F., Evans, C. T., and Devol,
A. H. (2006). Sulfolipids dramatically decrease phosphorus demand by

Frontiers in Genetics | www.frontiersin.org 20 February 2021 | Volume 12 | Article 586293



fgene-12-586293 February 2, 2021 Time: 18:54 # 21

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

picocyanobacteria in oligotrophic marine environments. Proc. Natl. Acad. Sci.
U.S.A. 103, 8607–8612. doi: 10.1073/pnas.0600540103

Varma, A., and Palsson, B. O. (1994). Metabolic flux balancing: basic concepts,
scientific and practical use. Bio/Technology 12, 994–998. doi: 10.1038/nbt10
94-994

Vaulot, D., Marie, D., Olson, R. J., and Chisholm, S. W. (1995). Growth of
Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean.
Science 268, 1480–1482. doi: 10.1126/science.268.5216.1480

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0
686-2

Waldbauer, J. R., Rodrigue, S., Coleman, M. L., and Chisholm, S. W. (2012).
Transcriptome and proteome dynamics of a light-dark synchronized bacterial
cell cycle. PLoS One 7:e43432. doi: 10.1371/journal.pone.0043432

Ward, B. A., Collins, S., Dutkiewicz, S., Gibbs, S., Bown, P., Ridgwell, A., et al.
(2019). Considering the role of adaptive evolution in models of the ocean
and climate system. J. Adv. Model. Earth Syst. 11, 3343–3361. doi: 10.1029/
2018MS001452

Welkie, D. G., Rubin, B. E., Diamond, S., Hood, R. D., Savage, D. F., and Golden,
S. S. (2019). A hard day’s night: cyanobacteria in diel cycles. Trends Microbiol.
27, 231–242.

Wintermute, E. H., Lieberman, T. D., and Silver, P. A. (2013). An objective function
exploiting suboptimal solutions in metabolic networks. BMC Syst. Biol. 7:98.
doi: 10.1186/1752-0509-7-98

Xiong, W., Cano, M., Wang, B., Douchi, D., and Yu, J. (2017). The plasticity
of cyanobacterial carbon metabolism. Curr. Opin. Chem. Biol. 41, 12–19. doi:
10.1016/j.cbpa.2017.09.004

Yang, A. (2011). Modeling and evaluation of CO 2 supply and utilization
in algal ponds. Ind. Eng. Chem. Res. 50, 11181–11192. doi: 10.1021/ie200
723w

Yoshikawa, K., Toya, Y., and Shimizu, H. (2017). Metabolic engineering of
Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux
balance analysis. Bioprocess Biosyst. Eng. 40, 791–796. doi: 10.1007/s00449-017-
1744-8
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