• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solution of Thermoacoustic Eigenvalue Problems with a Non-iterative Method

Buschmann, Philip Erik; Mensah, Georg; Nicoud, Franck; Moeck, Jonas
Peer reviewed, Journal article
Accepted version
View/Open
Buschmann (Locked)
URI
https://hdl.handle.net/11250/2732112
Date
2020
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [4538]
  • Publikasjoner fra CRIStin - NTNU [41954]
Original version
Journal of Engineering For Gas Turbines and Power. 2020, 142 (3), .   10.1115/1.4045076
Abstract
Gas turbine combustors are prone to undesirable combustion dynamics in the form of thermoacoustic oscillations. Analysis of the stability of thermoacoustic systems in the frequency domain leads to nonlinear eigenvalue problems (NLEVP); here, “nonlinear” refers to the fact that the eigenvalue, the complex oscillation frequency, appears in a nonlinear fashion. In this paper, we employ a noniterative strategy based on contour integration in the complex eigenvalue plane, which returns all eigenvalues inside the contour. An introduction to the technique is given, and is complemented with guidelines for the specific application to thermoacoustic problems. Two prototypical nonlinear eigenvalue problems are considered: a network model of the classical Rijke tube with an analytic flame response model and a finite element discretization of an annular model combustor with an experimental flame transfer function (FTF). Computation of all eigenvalues in a domain of interest is vital to assess stability of these systems. We demonstrate that this is generally challenging for iterative strategies. An eigenvalue solver based on contour integration, in contrast, provides a reliable, noniterative method to achieve this goal.
Publisher
The American Society of Mechanical Engineers (ASME)
Journal
Journal of Engineering For Gas Turbines and Power

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit