Vis enkel innførsel

dc.contributor.authorVikse, Matias
dc.contributor.authorWatson, Harry
dc.contributor.authorKim, Donghoi
dc.contributor.authorBarton, Paul
dc.contributor.authorGundersen, Truls
dc.date.accessioned2021-03-04T12:44:24Z
dc.date.available2021-03-04T12:44:24Z
dc.date.created2020-10-15T15:33:38Z
dc.date.issued2020
dc.identifier.citationEnergy. 2020, 196, 1-12.en_US
dc.identifier.issn0360-5442
dc.identifier.urihttps://hdl.handle.net/11250/2731655
dc.description.abstractThis article uses a nonsmooth flowsheeting methodology to create simulation and optimization models for dual mixed refrigerant processes. New improved operating conditions are obtained using the primal-dual interior-point optimizer IPOPT, with sensitivity information calculated using new developments in nonsmooth analysis to obtain generalized derivative information using a nonsmooth generalization of the vector forward mode of automatic differentiation. Several optimization studies are performed with constraints on both the minimum temperature difference () and total heat exchanger conductance () used to represent the trade-offs between energy consumption and the required heat transfer area. In addition, comparison is made with the conventional process simulator Aspen HYSYS using particle swarm optimization. Results show that the nonsmooth model was able to reduce the required compression power by 14.4% compared to the initial feasible design for the dual mixed refrigerant process, and by 20.4–21.6% for the dual mixed refrigerant process with NGL extraction. Furthermore, the solutions obtained from the nonsmooth model were 1.9–8.1% better than the design obtained by particle swarm optimization. Multistart optimization also shows that IPOPT converges to the best known solution when starting from an initial feasible design.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOptimization of a dual mixed refrigerant process using a nonsmooth approachen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-12en_US
dc.source.volume196en_US
dc.source.journalEnergyen_US
dc.identifier.doi10.1016/j.energy.2020.116999
dc.identifier.cristin1839893
dc.description.localcode©2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/)en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal