• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matrix factorizations for self-orthogonal categories of modules

Bergh, Petter Andreas; Thompson, Peder
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Bergh (344.3Kb)
Permanent lenke
https://hdl.handle.net/11250/2730347
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1454]
  • Publikasjoner fra CRIStin - NTNU [21809]
Originalversjon
Journal of Algebra and its Applications. 2020, .   10.1142/S0219498821500377
Sammendrag
For a commutative ring S and self-orthogonal subcategory C of Mod(S), we consider matrix factorizations whose modules belong to C. Let f∈S be a regular element. If f is M-regular for every M∈C, we show there is a natural embedding of the homotopy category of C-factorizations of f into a corresponding homotopy category of totally acyclic complexes. Moreover, we prove this is an equivalence if C is the category of projective or flat-cotorsion S-modules. Dually, using divisibility in place of regularity, we observe there is a parallel equivalence when C is the category of injective S-modules.
Utgiver
World Scientific Publishing
Tidsskrift
Journal of Algebra and its Applications

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit