• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced Equivalence Projective Simulation: A Framework for Modeling Formation of Stimulus Equivalence Classes

Abolpour Mofrad, Asieh; Yazidi, Anis; Abolpour Mofrad, Samaneh; Hammer, Hugo Lewi; Arntzen, Erik
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Mofrad.pdf (3.486Mb)
URI
https://hdl.handle.net/11250/2730237
Date
2021
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [5025]
  • Publikasjoner fra CRIStin - NTNU [26751]
Original version
10.1162/neco_a_01346
Abstract
Formation of stimulus equivalence classes has been recently modeled through equivalence projective simulation (EPS), a modified version of a projective simulation (PS) learning agent. PS is endowed with an episodic memory that resembles the internal representation in the brain and the concept of cognitive maps. PS flexibility and interpretability enable the EPS model and, consequently the model we explore in this letter, to simulate a broad range of behaviors in matching-to-sample experiments. The episodic memory, the basis for agent decision making, is formed during the training phase. Derived relations in the EPS model that are not trained directly but can be established via the network's connections are computed on demand during the test phase trials by likelihood reasoning. In this letter, we investigate the formation of derived relations in the EPS model using network enhancement (NE), an iterative diffusion process, that yields an offline approach to the agent decision making at the testing phase. The NE process is applied after the training phase to denoise the memory network so that derived relations are formed in the memory network and retrieved during the testing phase. During the NE phase, indirect relations are enhanced, and the structure of episodic memory changes. This approach can also be interpreted as the agent's replay after the training phase, which is in line with recent findings in behavioral and neuroscience studies. In comparison with EPS, our model is able to model the formation of derived relations and other features such as the nodal effect in a more intrinsic manner. Decision making in the test phase is not an ad hoc computational method, but rather a retrieval and update process of the cached relations from the memory network based on the test trial. In order to study the role of parameters on agent performance, the proposed model is simulated and the results discussed through various experimental settings.
Publisher
MIT Press
Journal
Neural Computation

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit